Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Parallelization Of Performance Limiting Routines In The Computational Fluid Dynamics General Notation System Library, Kyle Horne Dec 2009

Parallelization Of Performance Limiting Routines In The Computational Fluid Dynamics General Notation System Library, Kyle Horne

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The Computational Fluid Dynamics General Notation System provides a unified way in which computational fluid dynamics data can be stored, but does not support the parallel I/O capabilities now available from version five of the Hierarchical Data Format library which serves as a back end for he standard. To resolve this deficiency, a new parallel extension library has been written and benchmarked for this work which can write files compliant with the standard using parallel file access modes. When using this new library, the write performance shows an increase of four-fold in some cases when compared to the same hardware …


Demonstration Of A Completely Described Swirling Jet Experiment Used For Numerical Validation, Brandon M. Wilson May 2009

Demonstration Of A Completely Described Swirling Jet Experiment Used For Numerical Validation, Brandon M. Wilson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

This thesis demonstrates the standard for the design of an experimental model to be used for numerical validation purposes. It is proposed that numerical models may be assessed more accurately and directly by validation with a completely described experimental model, consisting of accurate descriptions of the operating conditions, fluid properties, and experimental uncertainties. This idea is demonstrated using an experimental model of a swirling jet at three Reynolds numbers (Re = 550, 2560, and 3650), with vortex breakdown existing in the higher two Reynolds number cases. Measurements of the swirling jet were obtained at two locations upstream of the jet …


Employing The Spectral Collocation Method In The Modeling Of Laminar Tube Flow Dynamics, Corey Michael Thibeault Jan 2009

Employing The Spectral Collocation Method In The Modeling Of Laminar Tube Flow Dynamics, Corey Michael Thibeault

All Graduate Theses, Dissertations, and Other Capstone Projects

The spectral collocation method is a numerical approximation technique that seeks the solution of a differential equation using a finite series of infinitely differentiable basis functions. This inherently global technique enjoys an exponential rate of convergence and has proven to be extremely effective in computational fluid dynamics. This paper presents a basic review of the spectral collocation method. The derivation is driven with an example of the approximation to the solution of a 1D Helmholtz equation. A Matlab code modeling two fluid dynamics problems is then given. First, the classic two-dimensional Graetz problem is simulated and compared to an analytical …


Experimental And Numerical Study Of A Proton Exchange Membrane Electrolyzer For Hydrogen Production, Sachin S. Deshmukh Jan 2009

Experimental And Numerical Study Of A Proton Exchange Membrane Electrolyzer For Hydrogen Production, Sachin S. Deshmukh

UNLV Theses, Dissertations, Professional Papers, and Capstones

Hydrogen as a fuel source has received attention from researchers globally due to its potential to replace fossil based fuels for energy production. Research is being performed on hydrogen production, storage and utilization methods to make its use economically feasible relative to current energy sources. The PEM electrolyzer is used to produce hydrogen and oxygen using water and electricity. Focus of our study is to provide a benchmark experiment and numerical model of a single cell electrolyzer that can assist in improving the current state of understanding of this system. Parametric analysis of an experimental cell was performed to understand …