Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi Feb 2024

A Study On High-Frequency Bending Fatigue, Microhardness, Tensile Strength, And Microstructure Of Parts Made Using Atomic Diffusion Additive Manufacturing (Adam) And Additive Friction Stir Deposition (Afsd), Hamed Ghadimi

LSU Doctoral Dissertations

This dissertation reports the findings of several studies on the mechanical and microstructural properties of parts made using atomic diffusion additive manufacturing (ADAM) and additive friction stir deposition (AFSD). The design of a small-sized bending-fatigue test specimen for an ultrasonic fatigue testing system is reported in Chapter 1. The design was optimized based on the finite element analysis and analytical solution. The stress–life (S–N) curve is obtained for Inconel alloy 718. Chapter 2 presents the findings of ultrasonic bending-fatigue and tensile tests carried out on the ADAM test specimens. The S-N curves were created in the very high-cycle fatigue regime. …


An Investigation Into The Challenges Of Contemporary Additive Manufacturing: Insights Into The Metallurgical Response Of Materials And Relevant Solution, Huan Ding Nov 2023

An Investigation Into The Challenges Of Contemporary Additive Manufacturing: Insights Into The Metallurgical Response Of Materials And Relevant Solution, Huan Ding

LSU Doctoral Dissertations

Additive Manufacturing (AM) has gained attention in recent years due to its unique capabilities in the fabrication of complex parts. As with any new research, there is still a lack of sufficient understanding in the field of additive manufacturing, and further investigation is needed to solve existing problems. Ultimately, the aim is to enable the widespread use of AM components across various industries.

Chapter One provides a brief introduction to the background and current bottlenecks of additive manufacturing technology. Chapter two focuses on the development of high-strength 7075 aluminum alloy (Al7075) for Fused Deposition Modeling and Sintering (FDMS) technology. Al7075 …


An Improved Earned Value Management Method Integrating Quality And Safety, Brian Briggs Jul 2021

An Improved Earned Value Management Method Integrating Quality And Safety, Brian Briggs

LSU Doctoral Dissertations

The construction industry invests significant time and money to improve quality and safety while reducing cost and schedule impacts. The industry has a sincere desire to improve construction project management methods to improve efficiency. Historically, quality and safety underperformances result from undermanaged quality control and safety activities. The cost and schedule impacts associated with poor quality work have always had an impact on construction operations. The unprecedented challenges and uncertainties of COVID-19 highlighted the need to improve the Earned Value Management (EVM) method within construction to reflect these quality and safety activities. The central goal of this dissertation is to …


Microscale Metal Forming: Mesoscopic Size Effect, Extrusion And Molding, Bin Zhang Mar 2019

Microscale Metal Forming: Mesoscopic Size Effect, Extrusion And Molding, Bin Zhang

LSU Doctoral Dissertations

The continuing trend of metallic device and product miniaturization has motivated studies on microscale metal forming technologies. A better understanding of materials’ mechanical response and deformation behavior is of importance for the design and operation of micro metal forming processes. In this dissertation, uniaxial compression testing was conducted on Al ring and pillar specimens with characteristic dimensions at meso to micro scales. The experimental data reveal inadequacies of the existing surface layer model and provides a baseline for delineating deformation mechanisms in micro metal forming operations. Microscale reverse extrusion experiment was carried out on Cu and Al rod specimens with …


Developing Nanopore Electromechanical Sensors With Transverse Electrodes For The Study Of Nanoparticles/Biomolecules, Mohammadsadegh Beheshti Apr 2018

Developing Nanopore Electromechanical Sensors With Transverse Electrodes For The Study Of Nanoparticles/Biomolecules, Mohammadsadegh Beheshti

LSU Doctoral Dissertations

This study concerns development of a technology of utilizing metallic nanowires for a sensing element in nanofluidic single molecular (nanoparticle) sensors formed in plastic substrates to detect the translocation of single molecules through the nanochannel. We aimed to develop nanofluidic single molecular sensors in plastic substrates due to their scalability towards high through and low cost manufacturing for point-of-care applications. Despite significant research efforts recently on the technologies and applications of nanowires, using individual nanowires as electric sensing element in nanofluidic bioanalytic devices has not been realized yet. This dissertation work tackles several technical challenges involved in this development, which …


Microfluidic Technology And Application In Urinal Analysis, Jiwen Xiang Feb 2018

Microfluidic Technology And Application In Urinal Analysis, Jiwen Xiang

LSU Doctoral Dissertations

Microfluidic technology offers numerous advantages in minimizing and integrating the traditional assays. However, the lack of efficient control components of the microfluidic systems has been hindering the widely commercialization of the technology. The research work in this dissertation focused on the development of effective control components for microfluidic applications.

A linear peristaltic pump was firstly designed, fabricated, and tested for conventional microfluidics by synchronously compressing the microfluidic channel with a miniature cam-follower system in Chapter 2. The miniature cam-follower system and microfluidic chip was prototyped using three-dimensional (3D) printing technology and soft lithography technology. Results from experimental test showed that …


Friction Stir Welding Manufacturing Advancement By On-Line High Temperature Phased Array Ultrasonic Testing And Correlation Of Process Parameters To Joint Quality, Daniel James Huggett Nov 2017

Friction Stir Welding Manufacturing Advancement By On-Line High Temperature Phased Array Ultrasonic Testing And Correlation Of Process Parameters To Joint Quality, Daniel James Huggett

LSU Doctoral Dissertations

Welding, a manufacturing process for joining, is widely employed in aerospace, aeronautical, maritime, nuclear, and automotive industries. Optimizing these techniques are paramount to continue the development of technologically advanced structures and vehicles. In this work, the manufacturing technique of friction stir welding (FSW) with aluminum alloy (AA) 2219-T87 is investigated to improve understanding of the process and advance manufacturing efficiency. AAs are widely employed in aerospace applications due to their notable strength and ductility. The extension of good strength and ductility to cryogenic temperatures make AAs suitable for rocket oxidizer and fuel tankage. AA-2219, a descendent of the original duralumin …


Design And Validation Of Novel Potential High Entropy Alloys, Boliang Zhang Jan 2017

Design And Validation Of Novel Potential High Entropy Alloys, Boliang Zhang

LSU Doctoral Dissertations

The design approach and validation of single phase senary refractory high entropy alloys (HEAs) MoNbTaTiVW and HfNbTaTiVZr were presented in first part of this dissertation. The design approach was to combine phase diagram inspection of available binary and ternary systems and Calculation of Phase Diagrams (CALPHAD) prediction. Experiments using X-ray diffraction and scanning electron microscopy techniques verified single phase microstructure in body centered cubic lattice for both alloys. The observed elemental segregation agrees well with the solidification prediction using Scheil model. The lattice constant, density and microhardness were measured to be 0.3216 nm, 4.954 GPa and 11.70 g/cm3 for …