Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Electromagnetics and Photonics

2013

Institution
Keyword
Publication

Articles 1 - 30 of 63

Full-Text Articles in Engineering

A Compact Ultra Wide-Band Radar System For See-Through-Wall Applications, Stephen G. Magoon Dec 2013

A Compact Ultra Wide-Band Radar System For See-Through-Wall Applications, Stephen G. Magoon

Masters Theses

A compact Ultra wide-band (UWB) radar system for through-wall applications has been developed. Lightweight, portable and low in power consumption, it is configurable for both bistatic and monostatic operation. It uses low cost, off-the-shelf surface mount components, and is ideally suited for ranging, 3d-imaging, and wall characterization. Tests show excellent pulse width generation, resulting in very broadband transmission (0.7 – 5.6 GHz) and good receiver dynamic range, resulting in accurate measurement capabilities.


Enhancing Gan Led Efficiency Through Nano-Gratings And Standing Wave Analysis, Gabriel M. Halpin Dec 2013

Enhancing Gan Led Efficiency Through Nano-Gratings And Standing Wave Analysis, Gabriel M. Halpin

Master's Theses

Improving energy efficient lighting is a necessary step in reducing energy consumption.Lighting currently consumes 17% of all U.S. residential and commercial electricity, but a report from the U.S. Office of Energy Efficiency and Renewable Energy projects that switching to LED lighting over the next 20 years will save 46% of electricity used in lighting.GaN LEDs are used for their efficient conversion of electricity to light, but improving GaN efficiency requires optically engineering the chip to extract more light.Total internal reflection limits GaN LED performance since light must approach the chip surface within 23.6° of normal to escape into air.This thesis …


Optics And Spectroscopy In Massive Electrodynamic Theory, Adam Caccavano Oct 2013

Optics And Spectroscopy In Massive Electrodynamic Theory, Adam Caccavano

Dissertations and Theses

The kinematics and dynamics for plane wave optics are derived for a massive electrodynamic field by utilizing Proca's theory. Atomic spectroscopy is also examined, with the focus on the 21 cm radiation due to the hyperfine structure of hydrogen. The modifications to Snell's Law, the Fresnel formulas, and the 21 cm radiation are shown to reduce to the familiar expressions in the limit of zero photon mass.


High-Power Microwave/ Radio-Frequency Components, Circuits, And Subsystems For Next-Generation Wireless Radio Front-Ends, Kenle Chen Oct 2013

High-Power Microwave/ Radio-Frequency Components, Circuits, And Subsystems For Next-Generation Wireless Radio Front-Ends, Kenle Chen

Open Access Dissertations

As the wireless communication systems evolve toward the future generation, intelligence will be the main signature/trend, well known as the concepts of cognitive and software-defined radios which offer ultimate data transmission speed, spectrum access, and user capacity. During this evolution, the human society may experience another round of `information revolution'. However, one of the major bottlenecks of this promotion lies in hardware realization, since all the aforementioned intelligent systems are required to cover a broad frequency range to support multiple communication bands and dissimilar standards. As the essential part of the hardware, power amplifiers (PAs) capable of operating over a …


A Dynamic Magnetic Equivalent Circuit Model For Design And Control Of Wound Rotor Synchronous Machines, Xiaoqi Wang Oct 2013

A Dynamic Magnetic Equivalent Circuit Model For Design And Control Of Wound Rotor Synchronous Machines, Xiaoqi Wang

Open Access Dissertations

Recently, a new magnetic equivalent circuit (MEC) model was developed to support automated multi-objective design of wound-rotor synchronous machines (WRSMs). In this research, the MEC model and its application have been enhanced. Initial enhancement has focused on using the MEC model to explore machine design and control as a unified problem. Excitation strategies for optimal steady-state performance have been developed. The optimization is implemented in two phases. First, stator and field excitation at rated power is obtained as part of a WRSM design in which the objectives are to minimize machine mass and loss. Second, a map between current and …


Filter Synthesis And Design Techniques For Highly Adaptable Systems, Eric James Naglich Oct 2013

Filter Synthesis And Design Techniques For Highly Adaptable Systems, Eric James Naglich

Open Access Dissertations

Software defined radio and cognitive radio (SDR/CR) are promising concepts toward more optimally using the electromagnetic spectrum for communications and data transfer. These systems are highly agile in terms of modulation technique and frequency of operation due to early digitization and software processing of received radio frequency signals. However, the front ends of SDR/CR systems often use static antennas and switched banks of static, wide bandwidth filters before the digitization process. These components limit the ability of SDR/CR systems to operate in environments with high levels of interference and are therefore a bottleneck in the path to achieving optimal adaptation …


Analysis Of A Miniature Radio Frequency Ion Thruster With An Inductively Coupled Plasma Source, Peter Paul Bumbarger Sep 2013

Analysis Of A Miniature Radio Frequency Ion Thruster With An Inductively Coupled Plasma Source, Peter Paul Bumbarger

Boise State University Theses and Dissertations

The performance of a 2 cm miniature ion thruster was analyzed. A thruster of this size was predicted to produce a thrust of 200 μN. The plasma density was measured against rf input power and propellant flow rate for three configurations: the ICP source by itself; the ICP source with discharge chamber; and finally, the ICP source, the discharge chamber, and the permanent magnet cusp system. Once the optimum case was determined, electrostatic grids were added and thrust measurements were taken with a set of segmented ion collector plates.

The miniature rf ion thruster obtained a thrust of 22.35 μN …


Techniques To Increase Computational Efficiency In Some Deterministic And Random Electromagnetic Propagation Problems, Selman Ozbayat Sep 2013

Techniques To Increase Computational Efficiency In Some Deterministic And Random Electromagnetic Propagation Problems, Selman Ozbayat

Open Access Dissertations

Efficient computation in deterministic and uncertain electromagnetic propagation environments, tackled by parabolic equation methods, is the subject of interest of this dissertation. Our work is comprised of two parts. In the first part we determine efficient absorbing boundary conditions for propagation over deterministic terrain and in the second part we study techniques for efficient quantification of random parameters/outputs in volume and surface based electromagnetic problems.

Domain truncation by transparent boundary conditions for open problems where parabolic equation is utilized to govern wave propagation are in general computationally costly. For the deterministic problem, we utilize two approximations to a convolution-in-space type …


A Compact, Reconfigurable Uhf Communication System Design For Use With Polysat's Embedded Linux Platform, Austin Williams Sep 2013

A Compact, Reconfigurable Uhf Communication System Design For Use With Polysat's Embedded Linux Platform, Austin Williams

Master's Theses

The beginning of this thesis provides an overview of the heritage UHF Communication System design flown on CP2, CP3, CP4, CP5, and CP6, summarizing previous analysis of its performance, and providing the justification for a complete system re-design. High level requirements for the new UHF System are defined, and a trade study is performed on state-of-the-art single chip transceivers, low noise amplifiers, and transmit power amplifiers. These components are then designed into a functional communication system, with key components analyzed for proper impedance matching and performance characterization compared to expected datasheet values. Next, the system as a whole is characterized …


Transparent Antennas For Solar Cell Integration, Tursunjan Yasin Aug 2013

Transparent Antennas For Solar Cell Integration, Tursunjan Yasin

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Transparent patch antennas have a certain level of optical transparency. Highly transparent patch antennas can be integrated with the solar panels of small satellites, which are becoming increasingly important in space exploration. Traditional patch antennas, which are not transparent, are employed on small satellites and compete with solar cells for surface area. But a transparent patch antenna can be placed directly on top of the solar cells and alleviate the issue of limited surface real estate. For such an integration, a high optical transparency of the patch antenna is required from the solar cells’ point of view since the solar …


Study Of A Non-Equilibrium Plasma Pinch With Application For Microwave Generation, Ahmad Al Agry Aug 2013

Study Of A Non-Equilibrium Plasma Pinch With Application For Microwave Generation, Ahmad Al Agry

UNLV Theses, Dissertations, Professional Papers, and Capstones

The Non-Equilibrium Plasma Pinch (NEPP), also known as the Dense Plasma Focus (DPF) is well known as a source of energetic ions, relativistic electrons and neutrons as well as electromagnetic radiation extending from the infrared to X-ray. In this dissertation, the operation of a 15 kJ, Mather type, NEPP machine is studied in detail. A large number of experiments are carried out to tune the machine parameters for best performance using helium and hydrogen as filling gases. The NEPP machine is modified to be able to extract the copious number of electrons generated at the pinch. A hollow anode with …


Investigating The Possible Sources Of Error Using The Method Of Moments To Solve A Dielectric Scattering Problem, Phillip D. Bishop Jul 2013

Investigating The Possible Sources Of Error Using The Method Of Moments To Solve A Dielectric Scattering Problem, Phillip D. Bishop

Master's Theses (2009 -)

In an electromagnetic scattering problem, an incoming electromagnetic wave interacts with an object. The object is typically located in some medium, such as free space. When this electromagnetic wave becomes incident upon the object, the wave scatters. The goal of this work is to analyze the scattered fields for three different incoming wave types: a plane wave, a monopole line source, and a multipole line source. Each source is incident on an infinitely long circular cylinder of lossless dielectric material. Each source has a unique scattering characteristic.

The volume equivalence principle is used to replace the object geometry with mathematically …


Metamaterial Enhanced Wireless Power Transmission System, Travis Jade Heffernan Jul 2013

Metamaterial Enhanced Wireless Power Transmission System, Travis Jade Heffernan

Master's Theses

Nikolai Tesla's revolutionary experiments demonstrated the possible benefits of transmitting power wirelessly as early as 1891. Applications for the military, consumers, emergency personnel, remote sensors, and others use Tesla’s discovery of wireless power. Wireless power transmission (WPT) has the potential to be a common source of consumable energy, but it will only receive serious consideration if the transmit and receive systems are extremely efficient and capable of delivering usable amounts of power. Research has been conducted to improve the efficiency and performance of nearly every aspect of WPT systems, but the relatively new field of metamaterials (MTMs) has yet to …


Design, Fabrication, And Testing Of An Emr Based Orbital Debris Impact Testing Platform, Jeffrey J. Maniglia Jr. Jun 2013

Design, Fabrication, And Testing Of An Emr Based Orbital Debris Impact Testing Platform, Jeffrey J. Maniglia Jr.

Master's Theses

This paper describes the changes made from Cal Poly’s initial railgun system, the Mk. 1 railgun, to the Mk. 1.1 system, as well as the design, fabrication, and testing of a newer and larger Mk. 2 railgun system. The Mk. 1.1 system is developed as a more efficient alteration of the original Mk. 1 system, but is found to be defective due to hardware deficiencies and failure, as well as unforeseen efficiency losses. A Mk. 2 system is developed and built around donated hardware from the Naval Postgraduate School. The Mk. 2 system strove to implement an efficient, augmented, electromagnetic …


Characterization And Modeling Of An O-Band 1310 Nm Sampled-Grating Distributed Bragg Reflector (Sg-Dbr) Laser For Optical Coherence Tomography (Oct) Applications, Desmond Charles Talkington Jun 2013

Characterization And Modeling Of An O-Band 1310 Nm Sampled-Grating Distributed Bragg Reflector (Sg-Dbr) Laser For Optical Coherence Tomography (Oct) Applications, Desmond Charles Talkington

Master's Theses

In this project, the performance aspects of a new early generation 1310 nm Sampled-Grating Distributed Bragg Reflector (SG-DBR) semiconductor laser are investigated. SG-DBR lasers are ideal for Source Swept Optical Coherence Tomography (SS-OCT), a Fourier-Domain based approach for OCT, necessitating a tunable wavelength source. Three internal sections control the frequency output for tuning, along with two amplifiers for amplitude control. These O-band SG-DBR devices are now being produced in research quantities. SG-DBR lasers have been produced at 1550 and 1600 nm for some times. Fundamental questions regarding the performance of the 1310 nm devices must be quantified. Standard metrics including …


Early Wildfire Detection Using Temporal Filtering And Multi-Band Infrared Analysis, Ansel John Boynton Jun 2013

Early Wildfire Detection Using Temporal Filtering And Multi-Band Infrared Analysis, Ansel John Boynton

Master's Theses

Every year wildfires threaten or destroy ecological habitats, man-made infrastructure and people’s lives. Additionally millions of dollars are spent each year trying to prevent and control these fires. Ideally if a wildfire can be detected before it rages out of control it can be extinguished and avoid large scale devastation. Traditional manned fire lookout towers are neither cost effective nor particularly efficient at detecting wildfire. It is proposed that temporal filtering can be used to isolate the signals created at the beginnings of potential wildfires. Temporal filtering can remove any background image and any periodic signals created by the camera …


A Novel Unit Cell Antenna For Highly Integrated Phased Arrays In The Shf Band, Timothy Bryan Ogilvie Jun 2013

A Novel Unit Cell Antenna For Highly Integrated Phased Arrays In The Shf Band, Timothy Bryan Ogilvie

Master's Theses

Phased arrays are electromagnetic antenna systems comprised of many radiating elements and processing electronics. Radiating elements are typically positioned in an orderly grid within the antenna aperture. In the receive mode of operation, radiating elements capture some of the signal energy from incoming radiation and guide these signals to processing electronics. Signals are filtered and amplified to maintain the desired sensitivity and complexly weighted using circuits with reconfigurable amplification gain and phase delay. Finally, all signals are combined. The summation of these complexly weighted spatial samples forms a spatial filter in the same way complexly weighted temporal samples establish a …


Indoor Radio Measurement And Planning For Umts/Hspda With Antennas, Marcellinus Iheanyi Eheduru May 2013

Indoor Radio Measurement And Planning For Umts/Hspda With Antennas, Marcellinus Iheanyi Eheduru

Theses and Dissertations

Over the last decade, mobile communication networks have evolved tremendously with a key focus on providing high speed data services in addition to voice. The third generation of mobile networks in the form of Universal Mobile Telecommunications System (UMTS) is already offering revolutionary mobile broadband experience to its users by deploying High Speed Downlink Packet Access (HSDPA) as its packet-data technology. With data speeds up to 14.4 Mbps and ubiquitous mobility, HSDPA is anticipated to become a preferred broadband access medium for end-users via mobile phones, laptops etc. While majority of these end-users are located indoors most of the time, …


Conductive Textiles And Their Use In Combat Wound Detection, Sensing, And Localization Applications, Stephen A. Holland May 2013

Conductive Textiles And Their Use In Combat Wound Detection, Sensing, And Localization Applications, Stephen A. Holland

Masters Theses

Conductive textiles, originally used for electromagnetic shielding purposes, have recently been utilized in body area network applications as fabric antennas and distributed sensors used to document and analyze kinematic movement, health vital signs, or haptic interactions. This thesis investigates the potential for using conductive textiles as a distributed sensor and integrated communication system component for use in combat wound detection, sensing, and localization applications. The goal of these proof-of-concept experiments is to provide a basis for robust system development which can expedite and direct the medical response team in the field. The combat wound detection system would have the capability …


Thermo-Piezo-Electro-Mechanical Simulation Of Algan (Aluminum Gallium Nitride) / Gan (Gallium Nitride) High Electron Mobility Transistor, Lorin E. Stevens May 2013

Thermo-Piezo-Electro-Mechanical Simulation Of Algan (Aluminum Gallium Nitride) / Gan (Gallium Nitride) High Electron Mobility Transistor, Lorin E. Stevens

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Due to the current public demand of faster, more powerful, and more reliable electronic devices, research is prolific these days in the area of high electron mobility transistor (HEMT) devices. This is because of their usefulness in RF (radio frequency) and microwave power amplifier applications including microwave vacuum tubes, cellular and personal communications services, and widespread broadband access. Although electrical transistor research has been ongoing since its inception in 1947, the transistor itself continues to evolve and improve much in part because of the many driven researchers and scientists throughout the world who are pushing the limits of what modern …


Determination Of Ionospheric Current Systems By Measuring The Phase Shift On Amateur Satellite Frequencies, Prajwal M. Kasturi May 2013

Determination Of Ionospheric Current Systems By Measuring The Phase Shift On Amateur Satellite Frequencies, Prajwal M. Kasturi

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Linearly polarized electromagnetic waves traveling through cold magnetized plasma experience Faraday rotation. The Appleton Hartree dispersion equation relates the phase shift on any electromagnetic ray to the magnetic field B, ion-electron density Ne and the angle the ray makes with the instantaneous magnetic field. This work uses the dispersion relation to calculate small time scale magnetic perturbations in the ionosphere due to electrojet current systems. The ionosphere is modeled as a collision free cold plasma with synthesized small scale magnetic perturbations. The work presented here simulates test cases, where the satellites transmits three amateur satellite radio band frequencies …


Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford May 2013

Plasmonic Nanostructures For The Absorption Enhancement Of Silicon Solar Cells, Nathan Matthias Burford

Graduate Theses and Dissertations

In this work, computational investigation of plasmonic nanostructures was conducted using the commercial finite element electromagnetics solver Ansys® HFSS. Arrays of silver toroid nanoparticles located on the surface of an amorphous silicon thin-film absorbing layer were studied for particle sizes ranging from 20 nm to 200 nm in outer diameter. Parametric optimization by calculating an approximation of the photocurrent enhancement due to the nanoparticles was performed to determine optimal surface coverage of the nanoparticles. A comparison was made between these optimized nanotoroid arrays and optimized nanosphere arrays based on spectral absorption enhancement and potential photocurrent enhancement in an amorphous silicon …


Photoacoustic Detection Of Terahertz Radiation For Chemical Sensing And Imaging Applications, Stjepan Blazevic Mar 2013

Photoacoustic Detection Of Terahertz Radiation For Chemical Sensing And Imaging Applications, Stjepan Blazevic

Theses and Dissertations

The main research objective is the development of photoacoustic sensor capable of detecting weak terahertz (THz) electromagnetic radiation. The feasibility of THz remote sensing is seen in the utilization of Microelectromechanical systems (MEMS) cantilever-based sensor. The overall sensing functionality of the detector in development is based on the photoacoustic spectroscopy and direct piezoelectric effect phenomena, as a result of which significant part of investigation has been conducted in the areas of terahertz electromagnetic radiation and its detection. The main focus of this research work was the detector analytical and Finite Element Method (FEM) simulation modeling, involving necessary material properties investigations …


Thermal And Electrical Transport In Ferromagnetic Metal Thin Films, Azure D. Avery Mar 2013

Thermal And Electrical Transport In Ferromagnetic Metal Thin Films, Azure D. Avery

Electronic Theses and Dissertations

The recent emergence of spin caloritronics has focused considerable attention on the interplay between spin, charge, and temperature gradients in magnetic materials. A reliable and energy efficient method for generating pure spin currents would signify an important step toward future spin-based nano-electronics that may offer lower power consumption and greater processing capabilities. To develop new technology using thermoelectric effects in magnetic thin films, it is essential to understand thermal and electrical transport through these films. One possible source of pure spin currents is the so-called spin Seebeck effect (SSE) in which a thermal gradient (∇T) applied to a ferromagnet is …


3-D Terahertz Synthetic-Aperture Imaging And Spectroscopy, Samuel C. Henry Feb 2013

3-D Terahertz Synthetic-Aperture Imaging And Spectroscopy, Samuel C. Henry

Dissertations and Theses

Terahertz (THz) wavelengths have attracted recent interest in multiple disciplines within engineering and science. Situated between the infrared and the microwave region of the electromagnetic spectrum, THz energy can propagate through non-polar materials such as clothing or packaging layers. Moreover, many chemical compounds, including explosives and many drugs, reveal strong absorption signatures in the THz range. For these reasons, THz wavelengths have great potential for non-destructive evaluation and explosive detection. Three-dimensional (3-D) reflection imaging with considerable depth resolution is also possible using pulsed THz systems. While THz imaging (especially 3-D) systems typically operate in transmission mode, reflection offers the most …


High Flux Isolated Attosecond Pulse Generation, Yi Wu Jan 2013

High Flux Isolated Attosecond Pulse Generation, Yi Wu

Electronic Theses and Dissertations

This thesis outlines the high intensity tabletop attosecond extreme ultraviolet laser source at the Institute for the Frontier of Attosecond Science and Technology Laboratory. First, a unique Ti:Sapphire chirped pulse amplifier laser system that delivers 14 fs pulses with 300 mJ energy at a 10 Hz repetition rate was designed and built. The broadband spectrum extending from 700 nm to 900 nm was obtained by seeding a two stage Ti:Sapphire chirped pulse power amplifier with mJ-level white light pulses from a gas filled hollow core fiber. It is the highest energy level ever achieved by a broadband pulse in a …


Optically Induced Forces In Scanning Probe Microscopy, Dana Kohlgraf-Owens Jan 2013

Optically Induced Forces In Scanning Probe Microscopy, Dana Kohlgraf-Owens

Electronic Theses and Dissertations

The focus of this dissertation is the study of measuring light not by energy transfer as is done with a standard photodetector such as a photographic film or charged coupled device, but rather by the forces which the light exerts on matter. In this manner we are able to replace or complement standard photodetector-based light detection techniques. One key attribute of force detection is that it permits the measurement of light over a very large range of frequencies including those which are difficult to access with standard photodetectors, such as the far IR and THz. The dissertation addresses the specific …


Ytterbium-Doped Fiber-Seeded Thin-Disk Master Oscillator Power Amplifier Laser System, Christina Willis-Ott Jan 2013

Ytterbium-Doped Fiber-Seeded Thin-Disk Master Oscillator Power Amplifier Laser System, Christina Willis-Ott

Electronic Theses and Dissertations

Lasers which operate at both high average power and energy are in demand for a wide range of applications such as materials processing, directed energy and EUV generation. Presented in this dissertation is a high-power 1 μm ytterbium-based hybrid laser system with temporally tailored pulse shaping capability and up to 62 mJ pulses, with the expectation the system can scale to higher pulse energies. This hybrid system consists of a low power fiber seed and pre-amplifier, and a solid state thin-disk regenerative amplifier. This system has been designed to generate high power temporally tailored pulses on the nanosecond time scale. …


High Energy, High Average Power, Picosecond Laser Systems To Drive Few-Cycle Opcpa, Andreas Vaupel Jan 2013

High Energy, High Average Power, Picosecond Laser Systems To Drive Few-Cycle Opcpa, Andreas Vaupel

Electronic Theses and Dissertations

The invention of chirped-pulse amplification (CPA) in 1985 led to a tremendous increase in obtainable laser pulse peak intensities. Since then, several table-top, Ti:sapphire-based CPA systems exceeding the 100 TW-level with more than 10 W average power have been developed and several systems are now commercially available. Over the last decade, the complementary technology of optical parametric chirped-pulse amplification (OPCPA) has improved in its performance to a competitive level. OPCPA allows direct amplification of an almost-octave spanning bandwidth supporting few-cycle pulse durations at center wavelengths ranging from the visible to the mid-IR. The current record in peak power from a …


Pulsed Tm-Fiber Laser For Mid-Ir Generation, Pankaj Kadwani Jan 2013

Pulsed Tm-Fiber Laser For Mid-Ir Generation, Pankaj Kadwani

Electronic Theses and Dissertations

The thulium fiber laser has gained interest due to its long emission wavelength, large bandwidth (~1.8 – 2.1 µm), high efficiencies (~60 %), and high output power levels both in cw as well as pulsed regimes. Applications like remote sensing, machining, medical tissue ablation, and mid-infrared generation benefit from high peak power thulium laser sources. Pulsed thulium fiber laser systems are advancing rapidly towards higher peak power levels and are becoming the preferred sources for these applications. This dissertation work describes the development of novel nanosecond pulsed thulium fiber laser systems with record high peak power levels targeting mid-infrared generation. …