Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Development Mems Acoustic Emission Sensors, Adrian Enrique Avila Gomez Nov 2017

Development Mems Acoustic Emission Sensors, Adrian Enrique Avila Gomez

USF Tampa Graduate Theses and Dissertations

The purpose of this research is to develop MEMS based acoustic emission sensors for structural health monitoring. Acoustic emission (AE) is a well-established nondestructive testing technique that is typically used to monitor for fatigue cracks in structures, leaks in pressurized systems, damages in composite materials or impacts. This technology can offer a precise evaluation of structural conditions and allow identification of imminent failures or minor failures that can be addressed by planned maintenances routines. AE causes a burst of ultrasonic energy that is measured as high frequency surface vibrations (30 kHz to 1 MHz) generated by transient elastic waves that …


Diffusion Modeling Of Impurities Through The Molybdenum Back Contact Of Cigs Solar Cells, Chinedum John Akwari Oct 2017

Diffusion Modeling Of Impurities Through The Molybdenum Back Contact Of Cigs Solar Cells, Chinedum John Akwari

Electrical & Computer Engineering Theses & Dissertations

CIGS is a major technology in photovoltaics and depends heavily, as any other PV technology, on the capacity to achieve the highest efficiency possible to compete on the market. Alkaline elements, notably sodium and potassium, play a key role in this matter as they enhance the open circuit voltage and the fill factor of the CIGS solar cells. However, this effect exists only for very specific concentration of sodium and potassium. These impurities typically diffuse through the soda-lime glass substrate.

Via modeling of the SIMS data, we try to understand and predict the diffusion mechanisms of these impurities from the …


Linear Quadratic Optimal Control For A Cascaded Converters-Based Microgrid, Amlam Niragire May 2017

Linear Quadratic Optimal Control For A Cascaded Converters-Based Microgrid, Amlam Niragire

Graduate Theses and Dissertations

There is a constant transformation of the electric grid due to an ongoing interest in the deployment of renewable energy resources and electric microgrid formation. This transformation, though advantageous in many ways, poses great challenges for the energy industry and there must be a constant improvement in modeling, simulation, analysis and control techniques in order to characterize and optimize the system design and operation. In this light, the scope of this thesis is focused on developing a linear model, analyzing the stability and designing an optimal linear quadratic regulator (LQR) for a microgrid system. The microgrid system used is inspired …


Emi Measurement And Modeling Techniques For Complex Electronic Circuits And Modules, Satyajeet Shinde Jan 2017

Emi Measurement And Modeling Techniques For Complex Electronic Circuits And Modules, Satyajeet Shinde

Doctoral Dissertations

"This dissertation consists of four papers. In the first paper, a combined model for predicting the most critical radiated emissions and total radiated power due to the display signals in a TV by incorporating the main processing board using the Huygens Equivalence theorem and the radiation due to the flex cable based on active probe measurements was developed.

In the second paper, a frequency-tunable resonant magnetic field probe was designed in the frequency range 900-2260 MHz for near-field scanning applications for the radio frequency interference studies by using a varactor diode providing the required capacitance and the parasitic inductance of …


Modeling Of Two Dimensional Graphene And Non-Graphene Material Based Tunnel Field Effect Transistors For Integrated Circuit Design, Md Shamiul Fahad Jan 2017

Modeling Of Two Dimensional Graphene And Non-Graphene Material Based Tunnel Field Effect Transistors For Integrated Circuit Design, Md Shamiul Fahad

LSU Doctoral Dissertations

The Moore’s law of scaling of metal oxide semiconductor field effect transistor (MOSFET) had been a driving force toward the unprecedented advancement in development of integrated circuit over the last five decades. As the technology scales down to 7 nm node and below following the Moore’s law, conventional MOSFETs are becoming more vulnerable to extremely high off-state leakage current exhibiting a tremendous amount of standby power dissipation. Moreover, the fundamental physical limit of MOSFET of 60 mV/decade subthreshold slope exacerbates the situation further requiring current transport mechanism other than drift and diffusion for the operation of transistors. One way to …


Quantitative Estimation Of Causality And Predictive Modeling For Precipitation Observation Sites And River Gage Sensors, Tri Vu Nguyen Jan 2017

Quantitative Estimation Of Causality And Predictive Modeling For Precipitation Observation Sites And River Gage Sensors, Tri Vu Nguyen

LSU Master's Theses

This project seeks to investigate two questions: correlations from precipitation measurement sensors to river gage sensors, and predictive modeling of peak river gage heights during precipitation events. First, if correlations can be quantified, then a predictive model can be explored to predict peak water levels at river gage sensors, in response to precipitation inputs. Answering both research questions can provide early flood detection benefits and provide quantitative time assessments for flood risks. An extensive data-driven study was conducted across a geographical area of the U.S, spanning the time period 2008-2016 to identify river gage sensors that are closely correlated to …