Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Electrical and Computer Engineering

Machine learning

McKelvey School of Engineering Theses & Dissertations

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Scatter Estimation And Correction For Experimental And Simulated Data In Multi-Slice Computed Tomography Using Machine Learning And Minimum Least Squares Methods, Cornelia Wang Aug 2021

Scatter Estimation And Correction For Experimental And Simulated Data In Multi-Slice Computed Tomography Using Machine Learning And Minimum Least Squares Methods, Cornelia Wang

McKelvey School of Engineering Theses & Dissertations

Current research aims to reduce the stopping power ratio prediction error in the inputs to the proton therapy planning process to less than 1%, which allows for improved radiation therapy planning. Our present study on reducing SPR error neglects the effect of scattering, which can increase SPR error by as much as 1-1.5%. The idea is that for each source-to-detector pair, 24 mm collimation data is close to 3 mm collimation data but with increased signal due to scattering. The goal is to estimate 3 mm collimation data from 24 mm collimation data. Pairs of sinograms, both experimental data and …


Machine Learning For Analog/Mixed-Signal Integrated Circuit Design Automation, Weidong Cao Aug 2021

Machine Learning For Analog/Mixed-Signal Integrated Circuit Design Automation, Weidong Cao

McKelvey School of Engineering Theses & Dissertations

Analog/mixed-signal (AMS) integrated circuits (ICs) play an essential role in electronic systems by processing analog signals and performing data conversion to bridge the analog physical world and our digital information world.Their ubiquitousness powers diverse applications ranging from smart devices and autonomous cars to crucial infrastructures. Despite such critical importance, conventional design strategies of AMS circuits still follow an expensive and time-consuming manual process and are unable to meet the exponentially-growing productivity demands from industry and satisfy the rapidly-changing design specifications from many emerging applications. Design automation of AMS IC is thus the key to tackling these challenges and has been …


Holistic Control For Cyber-Physical Systems, Yehan Ma Jan 2021

Holistic Control For Cyber-Physical Systems, Yehan Ma

McKelvey School of Engineering Theses & Dissertations

The Industrial Internet of Things (IIoT) are transforming industries through emerging technologies such as wireless networks, edge computing, and machine learning. However, IIoT technologies are not ready for control systems for industrial automation that demands control performance of physical processes, resiliency to both cyber and physical disturbances, and energy efficiency. To meet the challenges of IIoT-driven control, we propose holistic control as a cyber-physical system (CPS) approach to next-generation industrial automation systems. In contrast to traditional industrial automation systems where computing, communication, and control are managed in isolation, holistic control orchestrates the management of cyber platforms (networks and computing platforms) …


Investigating Patterns In Convolution Neural Network Parameters Using Probabilistic Support Vector Machines, Yuqiu Zhang Jan 2020

Investigating Patterns In Convolution Neural Network Parameters Using Probabilistic Support Vector Machines, Yuqiu Zhang

McKelvey School of Engineering Theses & Dissertations

Artificial neural networks(ANNs) are recognized as high-performance models for classification problems. They have proved to be efficient tools for many of today's applications like automatic driving, image and video recognition and restoration, big-data analysis. However, high performance deep neural networks have millions of parameters, and the iterative training procedure thus involves a very high computational cost. This research attempts to study the relationships between parameters in convolutional neural networks(CNNs). I assume there exists a certain relation between adjacent convolutional layers and proposed a machine learning model(MLM) that can be trained to represent this relation. The MLM's generalization ability is evaluated …


A General Framework Of Large-Scale Convex Optimization Using Jensen Surrogates And Acceleration Techniques, Soysal Degirmenci May 2016

A General Framework Of Large-Scale Convex Optimization Using Jensen Surrogates And Acceleration Techniques, Soysal Degirmenci

McKelvey School of Engineering Theses & Dissertations

In a world where data rates are growing faster than computing power, algorithmic acceleration based on developments in mathematical optimization plays a crucial role in narrowing the gap between the two. As the scale of optimization problems in many fields is getting larger, we need faster optimization methods that not only work well in theory, but also work well in practice by exploiting underlying state-of-the-art computing technology.

In this document, we introduce a unified framework of large-scale convex optimization using Jensen surrogates, an iterative optimization method that has been used in different fields since the 1970s. After this general treatment, …