Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Electrical and Computer Engineering

Machine learning

Portland State University

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Clustered Hyperspectral Target Detection, Sean Onufer Stalley Dec 2020

Clustered Hyperspectral Target Detection, Sean Onufer Stalley

Dissertations and Theses

Aerial target detection is often used to search for relatively small things over large areas of land. Depending on the size and signature of the target, detection can be a very easy or very difficult task. By capturing images with several hundred color channels, hyperspectral sensors provide a new way of looking at this task, both literally and figuratively. Hyperspectral sensors can be used in many aerial target detection tasks such as identifying unhealthy trees in a forest, searching for minerals at a mining site, or finding the sources of chemical leaks at a factory. The high spectral resolution of …


An Application Of Deep Learning Models To Automate Food Waste Classification, Alejandro Zachary Espinoza Dec 2019

An Application Of Deep Learning Models To Automate Food Waste Classification, Alejandro Zachary Espinoza

Dissertations and Theses

Food wastage is a problem that affects all demographics and regions of the world. Each year, approximately one-third of food produced for human consumption is thrown away. In an effort to track and reduce food waste in the commercial sector, some companies utilize third party devices which collect data to analyze individual contributions to the global problem. These devices track the type of food wasted (such as vegetables, fruit, boneless chicken, pasta) along with the weight. Some devices also allow the user to leave the food in a kitchen container while it is weighed, so the container weight must also …


Spectral Clustering For Electrical Phase Identification Using Advanced Metering Infrastructure Voltage Time Series, Logan Blakely Jan 2019

Spectral Clustering For Electrical Phase Identification Using Advanced Metering Infrastructure Voltage Time Series, Logan Blakely

Dissertations and Theses

The increasing demand for and prevalence of distributed energy resources (DER) such as solar power, electric vehicles, and energy storage, present a unique set of challenges for integration into a legacy power grid, and accurate models of the low-voltage distribution systems are critical for accurate simulations of DER. Accurate labeling of the phase connections for each customer in a utility model is one area of grid topology that is known to have errors and has implications for the safety, efficiency, and hosting capacity of a distribution system. This research presents a methodology for the phase identification of customers solely using …


Hierarchical Random Boolean Network Reservoirs, Sai Kiran Cherupally Feb 2018

Hierarchical Random Boolean Network Reservoirs, Sai Kiran Cherupally

Dissertations and Theses

Reservoir Computing (RC) is an emerging Machine Learning (ML) paradigm. RC systems contain randomly assembled computing devices and can be trained to solve complex temporal tasks. These systems are computationally cheaper to train than other ML paradigms such as recurrent neural networks, and they can also be trained to solve multiple tasks simultaneously. Further, hierarchical RC systems with fixed topologies, were shown to outperform monolithic RC systems by up to 40% when solving temporal tasks. Although the performance of monolithic RC networks was shown to improve with increasing network size, building large monolithic networks may be challenging, for example because …


Lithography Hotspot Detection, Jea Woo Park Jul 2017

Lithography Hotspot Detection, Jea Woo Park

Dissertations and Theses

The lithography process for chip manufacturing has been playing a critical role in keeping Moor's law alive. Even though the wavelength used for the process is bigger than actual device feature size, which makes it difficult to transfer layout patterns from the mask to wafer, lithographers have developed a various technique such as Resolution Enhancement Techniques (RETs), Multi-patterning, and Optical Proximity Correction (OPC) to overcome the sub-wavelength lithography gap.

However, as feature size in chip design scales down further to a point where manufacturing constraints must be applied to early design phase before generating physical design layout. Design for Manufacturing …


Training Set Design For Test Removal Classication In Ic Test, Nagarjun Hassan Ranganath Oct 2014

Training Set Design For Test Removal Classication In Ic Test, Nagarjun Hassan Ranganath

Dissertations and Theses

This thesis reports the performance of a simple classifier as a function of its training data set. The classifier is used to remove analog tests and is named the Test Removal Classifier (TRC).

The thesis proposes seven different training data set designs that vary by the number of wafers in the data set, the source of the wafers and the replacement scheme of the wafers. The training data set size ranges from a single wafer to a maximum of five wafers. Three of the training data sets include wafers from the Lot Under Test (LUT). The training wafers in the …


Reward-Driven Training Of Random Boolean Network Reservoirs For Model-Free Environments, Padmashri Gargesa Mar 2013

Reward-Driven Training Of Random Boolean Network Reservoirs For Model-Free Environments, Padmashri Gargesa

Dissertations and Theses

Reservoir Computing (RC) is an emerging machine learning paradigm where a fixed kernel, built from a randomly connected "reservoir" with sufficiently rich dynamics, is capable of expanding the problem space in a non-linear fashion to a higher dimensional feature space. These features can then be interpreted by a linear readout layer that is trained by a gradient descent method. In comparison to traditional neural networks, only the output layer needs to be trained, which leads to a significant computational advantage. In addition, the short term memory of the reservoir dynamics has the ability to transform a complex temporal input state …


Quantum Inductive Learning And Quantum Logic Synthesis, Martin Lukac Jan 2009

Quantum Inductive Learning And Quantum Logic Synthesis, Martin Lukac

Dissertations and Theses

Since Quantum Computer is almost realizable on large scale and Quantum Technology is one of the main solutions to the Moore Limit, Quantum Logic Synthesis (QLS) has become a required theory and tool for designing Quantum Logic Circuits. However, despite its growth, there is no any unified aproach to QLS as Quantum Computing is still being discovered and novel applications are being identified.

The intent of this study is to experimentally explore principles of Quantum Logic Synthesis and its applications to Inductive Machine Learning. Based on algorithmic approach, I first design a Genetic Algorithm for Quantum Logic Synthesis that is …