Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 111

Full-Text Articles in Engineering

Model-Free Methods To Analyze Pmu Data In Real-Time For Situational Awareness And Stability Monitoring, Sean Kantra Dec 2023

Model-Free Methods To Analyze Pmu Data In Real-Time For Situational Awareness And Stability Monitoring, Sean Kantra

All Dissertations

This dissertation presents and evaluates model-free methodologies to process Phasor Measurement Unit (PMU) data. Model-based PMU applications require knowledge of the system topology, most frequently the system admittance matrix. For large systems, the admittance matrix, or other system parameters, can be time-consuming to integrate into supporting PMU applications. These data sources are often sensitive and can require permissions to access, delaying the implementation of model-based approaches. This dissertation focuses on evaluating individual model-free applications to efficiently perform functions of interest to system operators for real-time situational awareness. Real-time situational awareness is evaluated with respect to central digitization where the PMU …


A Scalable Transmission And Distribution Co-Simulation Platform For Ibr-Heavy Power Systems, Yousu Chen Dec 2023

A Scalable Transmission And Distribution Co-Simulation Platform For Ibr-Heavy Power Systems, Yousu Chen

All Dissertations

The grid is evolving rapidly to meet the requirements of the clean energy transition. This evolution involves an increasing penetration of renewable energy resources and new complexities with a larger number of devices and controls spread across transmission and distribution networks. The boundary between transmission and distribution becomes blur. Consequently, we face significant challenges in managing the fundamental shift in power system physics. The ubiquitous use of Inverter Based Resources (IBRs) throughout the transmission and distribution systems has made it more difficult for the grid to maintain grid stability under dynamic conditions. Therefore, there is a strong need to explore …


Hpc-Enabled Fast And Configurable Dynamic Simulation, Analysis, And Learning For Complex Power System Adaptation And Control, Cong Wang Dec 2023

Hpc-Enabled Fast And Configurable Dynamic Simulation, Analysis, And Learning For Complex Power System Adaptation And Control, Cong Wang

All Dissertations

This dissertation presents an HPC-enabled fast and configurable dynamic simulation, analysis, and learning framework for complex power system adaptation and control. Dynamic simulation for a large transmission system comprising thousands of buses and branches implies the latency of complicated numerical computations. However, faster-than-real-time execution is often required to provide timely support for power system planning and operation. The traditional approaches for speeding up the simulation demand extensive computing facilities such as CPU-based multi-core supercomputers, resulting in heavily resource-dependent solutions. In this work, by coupling the Message Passing Interface (MPI) protocol with an advanced heterogeneous programming environment, further acceleration can be …


Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt Dec 2023

Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt

All Dissertations

Remotely actuated microscale swimming robots have the potential to revolutionize many aspects of biomedicine. However, for the longterm goals of this field of research to be achievable, it is necessary to develop modelling, simulation, and control strategies which effectively and efficiently account for not only the motion of individual swimmers, but also the complex interactions of such swimmers with their environment including other nearby swimmers, boundaries, other cargo and passive particles, and the fluid medium itself. The aim of this thesis is to study these problems in simulation from the perspective of controls and dynamical systems, with a particular focus …


Improved Vehicle-Bridge Interaction Modeling And Automation Of Bridge System Identification Techniques, Omar Abuodeh Aug 2023

Improved Vehicle-Bridge Interaction Modeling And Automation Of Bridge System Identification Techniques, Omar Abuodeh

All Dissertations

The Federal Highway Administration (FHWA) recognizes the necessity for cost-effective and practical system identification (SI) techniques within structural health monitoring (SHM) frameworks for asset management applications. Indirect health monitoring (IHM), a promising SHM approach, utilizes accelerometer-equipped vehicles to measure bridge modal properties (e.g., natural frequencies, damping ratios, mode shapes) through bridge vibration data to assess the bridge's condition. However, engineers and researchers often encounter noise from road roughness, environmental factors, and vehicular components in collected vehicle signals. This noise contaminates the vehicle signal with spurious modes corresponding to stochastic frequencies, impacting damage monitoring assessments. Thus, an efficient and reliable SI …


Investigation Of Vo2 Thin Films And Devices For Opto-Electromechanical Applications, Samee Azad Aug 2023

Investigation Of Vo2 Thin Films And Devices For Opto-Electromechanical Applications, Samee Azad

All Dissertations

Specialized and optimized low pressure direct oxidation technique have been implemented to synthesize high quality VO2 thin films on various substrates (sapphire, SiO2/Si, AT-cut quartz, GaN/AlGaN/GaN/Si and muscovite). Structural and surface characterization methods such as X-ray diffraction, Raman spectroscopy and atomic force microscopy have been administered on the grown VO2 films which indicate their material quality. Transition of characteristics of the VO2 films are caused by semiconductor metal transition (SMT). This phenomenon is attributed as the change maker in transition of resistivity and transmitted optical power through the VO2 films. Apart the substrates mentioned, …


Photovoltaics, Batteries, And Silicon Carbide Power Electronics Based Infrastructure For Sustainable Power Networks, Prahaladh Paniyil May 2023

Photovoltaics, Batteries, And Silicon Carbide Power Electronics Based Infrastructure For Sustainable Power Networks, Prahaladh Paniyil

All Dissertations

The consequences of climate change have emphasized the need for a power network that is centered around clean, green, and renewable sources of energy. Currently, Photovoltaics (PV) and wind turbines are the only two modes of technology that can convert renewable energy of the sun and wind respectively into large-scale power for the electricity network. This dissertation aims at providing a novel solution to implement these sources of power (majorly PV) coupled with Lithium-ion battery storage in an efficient and sustainable approach. Such a power network can enable efficiency, reliability, low-cost, and sustainability with minimum impact to the environment.

The …


Enhanced Mobile Networking Using Multi-Connectivity And Packet Duplication In Next-Generation Cellular Networks, Prabodh Mishra May 2023

Enhanced Mobile Networking Using Multi-Connectivity And Packet Duplication In Next-Generation Cellular Networks, Prabodh Mishra

All Dissertations

Modern cellular communication systems need to handle an enormous number of users and large amounts of data, including both users as well as system-oriented data. 5G is the fifth-generation mobile network and a new global wireless standard that follows 4G/LTE networks. The uptake of 5G is expected to be faster than any previous cellular generation, with high expectations of its future impact on the global economy. The next-generation 5G networks are designed to be flexible enough to adapt to modern use cases and be highly modular such that operators would have the flexibility to provide selective features based on user …


Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm May 2023

Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm

All Dissertations

Electrically assisted manufacturing (EAM) is the direct application of an electric current to a workpiece during manufacturing. This advanced manufacturing process has been shown to produce anomalous effects which extend beyond the current state of modeling of thermal influences. These purported non-thermal effects have collectively been termed electroplastic effects (EPEs).

While there is a distinct difference in results between steady-state (ideal DC) testing and pulsed current testing, the very definition of these two EAM methods has not been well established. A "long" pulse may be considered DC current; a "short" pulse may produce electroplastic effects; and even "steady-state" current shapes …


Deep Reinforcement Learning And Game Theoretic Monte Carlo Decision Process For Safe And Efficient Lane Change Maneuver And Speed Management, Shahab Karimi May 2023

Deep Reinforcement Learning And Game Theoretic Monte Carlo Decision Process For Safe And Efficient Lane Change Maneuver And Speed Management, Shahab Karimi

All Dissertations

Predicting the states of the surrounding traffic is one of the major problems in automated driving. Maneuvers such as lane change, merge, and exit management could pose challenges in the absence of intervehicular communication and can benefit from driver behavior prediction. Predicting the motion of surrounding vehicles and trajectory planning need to be computationally efficient for real-time implementation. This dissertation presents a decision process model for real-time automated lane change and speed management in highway and urban traffic. In lane change and merge maneuvers, it is important to know how neighboring vehicles will act in the imminent future. Human driver …


Design And Implementation Of High-Efficiency, Lightweight, System-Friendly Solid-State Circuit Breaker, Dehao Qin May 2023

Design And Implementation Of High-Efficiency, Lightweight, System-Friendly Solid-State Circuit Breaker, Dehao Qin

All Dissertations

Direct current (DC) distribution system has shown potential over the alternative current (AC) distribution system in some application scenarios, e.g., electrified transportation, renewable energy, data center, etc. Because of the fast response speed, DC solid-state circuit breaker (SSCB) becomes a promising technology for the future power electronics intensive DC energy system with fault-tolerant capability. First, a thorough literature survey is performed to review the DC-SSCB technology. The key components for DC-SSCB, including power semiconductors, topologies, energy absorption units, and fault detection circuits, are studied. It is observed that the prior studies mainly focus on the basic interruption capability of the …


Enabling High Throughput And Reliable Low Latency Communication Over Vehicular Mobility In Next-Generation Cellular Networks, Snigdhaswin Kar May 2023

Enabling High Throughput And Reliable Low Latency Communication Over Vehicular Mobility In Next-Generation Cellular Networks, Snigdhaswin Kar

All Dissertations

The fifth-generation (5G) networks and beyond need paradigm shifts to realize the exponentially increasing demands of next-generation services for high throughputs, low latencies, and reliable communication under various mobility scenarios. However, these promising features have critical gaps that need to be filled before they can be fully implemented for mobile applications in complex environments like smart cities. Although the sub-6 GHz bands can provide reliable and larger coverage, they cannot provide high data rates with low latencies due to a scarcity of spectrum available in these bands. Millimeter wave (mmWave) communication is a key enabler for a significant increase in …


A Study On Asymmetric Perfect Vortex: Fractional Orbital Angular Momentum And Nonlinear Interaction, Kunjian Dai May 2023

A Study On Asymmetric Perfect Vortex: Fractional Orbital Angular Momentum And Nonlinear Interaction, Kunjian Dai

All Dissertations

In this work, the manipulation including generation and detection of the asymmetric perfect vortex (APV) carrying fractional orbital angular momentum (OAM) was demonstrated and discussed. All the manipulation of the modes is in real-time which provides a perfect tool for sensing the dynamic properties of complex media. The OAM-involved nonlinear conversion, specifically the second-harmonic generation (SHG) using the APV and asymmetric Bessel-Gaussian (BG) beams was studied in detail.

The generation and detection of the APV are based on the HOBBIT concept which includes acoustic optical deflector (AOD) and log-polar coordinate transformation optics. The RF signal driving the AOD allows the …


Multi-Criteria Performance Evaluation And Control In Power And Energy Systems, Payam Ramezani Badr Dec 2022

Multi-Criteria Performance Evaluation And Control In Power And Energy Systems, Payam Ramezani Badr

All Dissertations

The role of intuition and human preferences are often overlooked in autonomous control of power and energy systems. However, the growing operational diversity of many systems such as microgrids, electric/hybrid-electric vehicles and maritime vessels has created a need for more flexible control and optimization methods. In order to develop such flexible control methods, the role of human decision makers and their desired performance metrics must be studied in power and energy systems. This dissertation investigates the concept of multi-criteria decision making as a gateway to integrate human decision makers and their opinions into complex mathematical control laws. There are two …


Modeling, Control And Estimation Of Reconfigurable Cable Driven Parallel Robots, Adhiti Raman Thothathri Dec 2022

Modeling, Control And Estimation Of Reconfigurable Cable Driven Parallel Robots, Adhiti Raman Thothathri

All Dissertations

The motivation for this thesis was to develop a cable-driven parallel robot (CDPR) as part of a two-part robotic device for concrete 3D printing. This research addresses specific research questions in this domain, chiefly, to present advantages offered by the addition of kinematic redundancies to CDPRs. Due to the natural actuation redundancy present in a fully constrained CDPR, the addition of internal mobility offers complex challenges in modeling and control that are not often encountered in literature.

This work presents a systematic analysis of modeling such kinematic redundancies through the application of reciprocal screw theory (RST) and Lie algebra while …


Enhancing The Performance Of Poly(3-Hexylthiophene) Based Organic Thin-Film Transistors Using An Interface Engineering Method, Eyob Negussie Tarekegn Dec 2022

Enhancing The Performance Of Poly(3-Hexylthiophene) Based Organic Thin-Film Transistors Using An Interface Engineering Method, Eyob Negussie Tarekegn

All Dissertations

An original design and photolithographic fabrication process for poly(3-hexylthiophene-2, 5-diyl) (P3HT) based organic thin-film transistors (OTFTs) is presented. The structure of the transistors was based on the bottom gate bottom contact OTFT. The fabrication process was efficient, cost-effective, and relatively straightforward to implement. Current–voltage (I-V) measurements were performed to characterize the primary electronic properties of the transistors. The measured mobility of these transistors was significantly higher than most results reported in the literature for other similar bottom gate bottom contact P3HT OTFTs. The higher mobility is explained primarily by the effectiveness of the fabrication process in keeping the interfacial layers …


Permanently-Installed Distributed Pressure Sensors For Downhole Applications, Xuran Zhu Dec 2022

Permanently-Installed Distributed Pressure Sensors For Downhole Applications, Xuran Zhu

All Dissertations

Technology advancements (e.g., hydraulic fracturing and horizontal drilling) to recover unconventional oil and gas (UOG) resources are critical in maintaining future U.S. oil and gas production levels. Permanently installed distributed downhole pressure sensors could monitor fracture propagation, assess the effectiveness of hydraulic fracturing, and optimize hydraulic fracturing placement so that overall UOG recovery efficiency can be increased. However, the harsh environment (high temperatures, high pressures, strong vibration, and presence of brine, mud, debris, hydrate, and various gases), the long data telemetry distance, and the requirements of reliability and service lifetime make the downhole monitoring a very challenging task. To combat …


High-Performance Vlsi Architectures For Lattice-Based Cryptography, Weihang Tan Dec 2022

High-Performance Vlsi Architectures For Lattice-Based Cryptography, Weihang Tan

All Dissertations

Lattice-based cryptography is a cryptographic primitive built upon the hard problems on point lattices. Cryptosystems relying on lattice-based cryptography have attracted huge attention in the last decade since they have post-quantum-resistant security and the remarkable construction of the algorithm. In particular, homomorphic encryption (HE) and post-quantum cryptography (PQC) are the two main applications of lattice-based cryptography. Meanwhile, the efficient hardware implementations for these advanced cryptography schemes are demanding to achieve a high-performance implementation.

This dissertation aims to investigate the novel and high-performance very large-scale integration (VLSI) architectures for lattice-based cryptography, including the HE and PQC schemes. This dissertation first presents …


Implementation Of Sic Power Electronics For Green Energy Based Electrification Of Transportation, Naireeta Deb Dec 2022

Implementation Of Sic Power Electronics For Green Energy Based Electrification Of Transportation, Naireeta Deb

All Dissertations

Increase in greenhouse gas emission poses a threat to the quality of air thus threatening the future of living beings on earth. A large part of the emission is produced by transport vehicles. Electric vehicles (EVs) are a great solution to this threat. They will completely replace the high usage of hydrocarbons in the transport sector. Energy efficiency and reduced local pollution can also be expected with full implementation of electrification of transportation. However, the current grid is not prepared to take the power load of EV charging if it were to happen readily. Moreover, critics are doubtful about the …


Multi-Robot Symbolic Task And Motion Planning Leveraging Human Trust Models: Theory And Applications, Huanfei Zheng Nov 2022

Multi-Robot Symbolic Task And Motion Planning Leveraging Human Trust Models: Theory And Applications, Huanfei Zheng

All Dissertations

Multi-robot systems (MRS) can accomplish more complex tasks with two or more robots and have produced a broad set of applications. The presence of a human operator in an MRS can guarantee the safety of the task performing, but the human operators can be subject to heavier stress and cognitive workload in collaboration with the MRS than the single robot. It is significant for the MRS to have the provable correct task and motion planning solution for a complex task. That can reduce the human workload during supervising the task and improve the reliability of human-MRS collaboration. This dissertation relies …


Snap : A Software-Defined & Named-Data Oriented Publish-Subscribe Framework For Emerging Wireless Application Systems, Manveen Kaur Aug 2022

Snap : A Software-Defined & Named-Data Oriented Publish-Subscribe Framework For Emerging Wireless Application Systems, Manveen Kaur

All Dissertations

The evolution of Cyber-Physical Systems (CPSs) has given rise to an emergent class of CPSs defined by ad-hoc wireless connectivity, mobility, and resource constraints in computation, memory, communications, and battery power. These systems are expected to fulfill essential roles in critical infrastructure sectors. Vehicular Ad-Hoc Network (VANET) and a swarm of Unmanned Aerial Vehicles (UAV swarm) are examples of such systems. The significant utility of these systems, coupled with their economic viability, is a crucial indicator of their anticipated growth in the future. Typically, the tasks assigned to these systems have strict Quality-of-Service (QoS) requirements and require sensing, perception, and …


Hybrid Smart Transformer For Enhanced Power System Protection Against Dc With Advanced Grid Support, Moazzam Nazir Aug 2022

Hybrid Smart Transformer For Enhanced Power System Protection Against Dc With Advanced Grid Support, Moazzam Nazir

All Dissertations

The traditional grid is rapidly transforming into smart substations and grid assets incorporating advanced control equipment with enhanced functionalities and rapid self-healing features. The most important and strategic equipment in the substation is the transformer and is expected to perform a variety of functions beyond mere voltage conversion and isolation. While the concept of smart solid-state transformers (SSTs) is being widely recognized, their respective lifetime and reliability raise concerns, thus hampering the complete replacement of traditional transformers with SSTs. Under this scenario, introducing smart features in conventional transformers utilizing simple, cost-effective, and easy to install modules is a highly desired …


Data-Driven Distributed Modeling, Operation, And Control Of Electric Power Distribution Systems, Hasala Dharmawardena Aug 2022

Data-Driven Distributed Modeling, Operation, And Control Of Electric Power Distribution Systems, Hasala Dharmawardena

All Dissertations

The power distribution system is disorderly in design and implementation, chaotic in operation, large in scale, and complex in every way possible. Therefore, modeling, operating, and controlling the distribution system is incredibly challenging. It is required to find solutions to the multitude of challenges facing the distribution grid to transition towards a just and sustainable energy future for our society. The key to addressing distribution system challenges lies in unlocking the full potential of the distribution grid. The work in this dissertation is focused on finding methods to operate the distribution system in a reliable, cost-effective, and just manner.

In …


Protection Of Microgrids: A Scalable And Topology Agnostic Scheme With Self-Healing Dynamic Reconfiguration, Phani Harsha Gadde Aug 2022

Protection Of Microgrids: A Scalable And Topology Agnostic Scheme With Self-Healing Dynamic Reconfiguration, Phani Harsha Gadde

All Dissertations

Momentum towards realizing the smart grid will continue to result in high penetration of renewable fed Distributed Energy Resources (DERs) in the Electric Power System (EPS). These DERs will most likely be Inverter Based Resources(IBRs) and will be an integral part of the distribution system in the near future. The drive towards resiliency with these IBRs will enable a modular topology where several microgrids are tied together, operating synchronously to form the future EPS at the distribution level.

Since the microgrids can evolve from existing distribution feeders, they will be unbalanced in load, phases, and feeder impedances. A typical control …


Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik Aug 2022

Subwavelength Engineering Of Silicon Photonic Waveguides, Farhan Bin Tarik

All Dissertations

The dissertation demonstrates subwavelength engineering of silicon photonic waveguides in the form of two different structures or avenues: (i) a novel ultra-low mode area v-groove waveguide to enhance light-matter interaction; and (ii) a nanoscale sidewall crystalline grating performed as physical unclonable function to achieve hardware and information security. With the advancement of modern technology and modern supply chain throughout the globe, silicon photonics is set to lead the global semiconductor foundries, thanks to its abundance in nature and a mature and well-established industry. Since, the silicon waveguide is the heart of silicon photonics, it can be considered as the core …


Algorithm Optimization And Hardware Acceleration For Machine Learning Applications On Low-Energy Systems, Jianchi Sun Aug 2022

Algorithm Optimization And Hardware Acceleration For Machine Learning Applications On Low-Energy Systems, Jianchi Sun

All Dissertations

Machine learning (ML) has been extensively employed for strategy optimization, decision making, data classification, etc. While ML shows great triumph in its application field, the increasing complexity of the learning models introduces neoteric challenges to the ML system designs. On the one hand, the applications of ML on resource-restricted terminals, like mobile computing and IoT devices, are prevented by the high computational complexity and memory requirement. On the other hand, the massive parameter quantity for the modern ML models appends extra demands on the system's I/O speed and memory size. This dissertation investigates feasible solutions for those challenges with software-hardware …


Hierarchical And Distributed Architecture For Large-Scale Residential Demand Response Management, Pramod Herath Mudiyanselage Aug 2022

Hierarchical And Distributed Architecture For Large-Scale Residential Demand Response Management, Pramod Herath Mudiyanselage

All Dissertations

The implementation of smart grid brings several challenges to the power system. The ‘prosumer’ concept, proposed by the smart grid, allows small-scale ‘nano-grids’ to buy or sell electric power at their own discretion. One major problem in integrating prosumers is that they tend to follow the same pattern of generation and consumption, which is un-optimal for grid operations. One tool to optimize grid operations is demand response (DR). DR attempts to optimize by altering the power consumption patterns. DR is an integrated tool of the smart grid. FERC Order No. 2222 caters for distributed energy resources, including demand response resources, …


Embedding A Grid Of Load Cells Into A Dining Table For Automatic Monitoring And Detection Of Eating Events, Mohammad Mayyan Aug 2022

Embedding A Grid Of Load Cells Into A Dining Table For Automatic Monitoring And Detection Of Eating Events, Mohammad Mayyan

All Dissertations

This dissertation describes a “smart dining table” that can detect and measure consumption events. This work is motivated by the growing problem of obesity, which is a global problem and an epidemic in the United States and Europe. Chapter 1 gives a background on the economic burden of obesity and its comorbidities. For the assessment of obesity, we briefly describe the classic dietary assessment tools and discuss their drawback and the necessity of using more objective, accurate, low-cost, and in-situ automatic dietary assessment tools. We explain in short various technologies used for automatic dietary assessment such as acoustic-, motion-, or …


Design And Operation Of A Microwave Flow Cytometer For Single Cell Detection And Identification, Jeffrey A. Osterberg Aug 2022

Design And Operation Of A Microwave Flow Cytometer For Single Cell Detection And Identification, Jeffrey A. Osterberg

All Dissertations

Microwave dielectric sensing has become a popular technique in biological cell sensing for its potential in online, label-free, and real-time sensing. At microwave frequencies probing signals are sensitive to intracellular properties since they are able to penetrate cell membranes, making microwave flow cytometry a promising technology for label-free biosensing. In this dissertation a microwave flow cytometer is designed and used to measure single biological cells and micro particles. A radio frequency (RF)/microwave interferometer serves as the measurement system for its high sensitivity and tunability and we show that a two-stage interferometer can achieve up to 20 times higher sensitivity than …


Porous Silicon Photonics For Label-Free Interferometric Biosensing And Flat Optics, Tahmid Hassan Talukdar May 2022

Porous Silicon Photonics For Label-Free Interferometric Biosensing And Flat Optics, Tahmid Hassan Talukdar

All Dissertations

This dissertation uses porous silicon as a material platform to explore novel optical effects in three domains: (i) It studies dispersion engineering in integrated waveguides to achieve high performance group index sensing. With proper design parameters, the sensor waveguides can theoretically achieve 6 times larger group index shift compared to the actual bulk effective refractive index shift. We demonstrate the guided mode confinement factor to be a key parameter in design and implementation of these waveguides. (ii) It explores multicolor laser illumination to experimentally demonstrate perceptually enhanced colorimetric sensing, overcoming the limitations faced by many contemporary colorimetric sensors. Our technique …