Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 156

Full-Text Articles in Engineering

Analysis Of Metallic Shielding For Reduction Of Rf Induced Heating Of Electrode During Mri For Active Implants, Krishna M. Singhal Aug 2018

Analysis Of Metallic Shielding For Reduction Of Rf Induced Heating Of Electrode During Mri For Active Implants, Krishna M. Singhal

Open Access Dissertations

The options available to patients with implantable devices are limited. It is because there are multiple interactions between the MRI environment and the implantable medical devices. The three main components of MRI systems- static magnet, RF coil, and a gradient coil- interact with the implantable medical devices. These interactions can cause force, torque, device vibrations and RF-induced heating. Among all these potential hazards is the heating caused by the RF electromagnetic field. The lead wires of the implants can act as antennas and pick up the electric field generated by the RF coil. This results in the induced current traveling …


Statistical Modeling And Simulation Of Variability And Reliability Of Cmos Technology, Khaled Hassan Md Dec 2016

Statistical Modeling And Simulation Of Variability And Reliability Of Cmos Technology, Khaled Hassan Md

Open Access Dissertations

The introduction of High-κ Metal Gate transistors led to higher integration density, low leakage current, and faster switching speed. However, this transition in technology roadmap brought about new failure mechanisms such as Positive Bias Temperature Instability and Stress Induced Leakage Current. In addition, the relentless downscaling of devices to keep up with Moore's law has significantly increased the time-zero variability caused by Random Dopant Fluctuation, Mean Gate Length Deviation, and Line Edge Roughness. Because of their possible correlation with time dependent aging effects, the quantification of reliability has become more complex than ever. To that effect, we propose a framework …


Two-Dimensional Electronics And Optoelectronics: From Materials Syntheses To Device Applications, Yexin Deng Dec 2016

Two-Dimensional Electronics And Optoelectronics: From Materials Syntheses To Device Applications, Yexin Deng

Open Access Dissertations

The current research on semiconductor device has pushed the scaling of the devices into sub-10 nanometers (nm) regime. While most of the current devices are made on silicon germanium, and III-V materials, people are looking for new materials for use in novel semiconductor devices: either for use in extremely scaled device in sub-10 or even sub-5 nm devices, or for use in other situations such as flexible electronics or low power and lower cost IoT (Internet of Things) applications.

Two-dimensional (2D) materials have attracted extensive research interests in their physical, chemical and mechanical properties.Since the discovery of graphene, which a …


New Marked Point Process Models For Microscopy Images, Dae Woo Kim Dec 2016

New Marked Point Process Models For Microscopy Images, Dae Woo Kim

Open Access Dissertations

In developing new materials, the characterization of microstructures is one of the key steps. To characterize the microstructure, many microscope modalities have been devised and improved over decades. With the increase in image resolution in the spatial and time domains, the amount of image data keeps increasing in the fields such as materials science and biomedical engineering. As a result, image processing plays a critical role in this era of science and technology. In materials image analysis, image segmentation and feature detection are considered very important.

The first part of this research aims to resolve the segmentation problem caused by …


Fast Time- And Frequency-Domain Finite-Element Methods For Electromagnetic Analysis, Woochan Lee Dec 2016

Fast Time- And Frequency-Domain Finite-Element Methods For Electromagnetic Analysis, Woochan Lee

Open Access Dissertations

Fast electromagnetic analysis in time and frequency domain is of critical importance to the design of integrated circuits (IC) and other advanced engineering products and systems. Many IC structures constitute a very large scale problem in modeling and simulation, the size of which also continuously grows with the advancement of the processing technology. This results in numerical problems beyond the reach of existing most powerful computational resources. Different from many other engineering problems, the structure of most ICs is special in the sense that its geometry is of Manhattan type and its dielectrics are layered. Hence, it is important to …


Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum Dec 2016

Plasmonic Devices Based On Transparent Conducting Oxides For Near Infrared Applications, Kim Jongbum

Open Access Dissertations

In the past decade, there have been many breakthroughs in the field of plasmonics and nanophotonics that have enabled optical devices with unprecedented functionalities. Even though remarkable demonstration of at photonic devices has been reported, constituent materials are limited to the noble metals such as gold (Au) and silver (Ag) due to their abundance of free electrons which enable the support of plasmon resonances in the visible range. With the strong demand for extension of the optical range of plasmonic applications, it is now a necessity to explore and develop alternative materials which can overcome intrinsic issues of noble metals …


Observability And Observer Design For Switched Linear Systems, Scott C. Johnson Dec 2016

Observability And Observer Design For Switched Linear Systems, Scott C. Johnson

Open Access Dissertations

Hybrid vehicles, HVAC systems in new/old buildings, power networks, and the like require safe, robust control that includes switching the mode of operation to meet environmental and performance objectives. Such switched systems consist of a set of continuous-time dynamical behaviors whose sequence of operational modes is driven by an underlying decision process. This thesis investigates feasibility conditions and a methodology for state and mode reconstruction given input-output measurements (not including mode sequence). An application herein considers insulation failures in permanent magnet synchronous machines (PMSMs) used in heavy hybrid vehicles.

Leveraging the feasibility literature for switched linear time-invariant systems, this thesis …


Clustered-Dot Periodic Halftone Screen Design And Icc Profile Color Table Compression, Chuohao Tang Dec 2016

Clustered-Dot Periodic Halftone Screen Design And Icc Profile Color Table Compression, Chuohao Tang

Open Access Dissertations

This dissertation studies image quality problems associated with rendering images in devices like printing or displaying. It mainly includes two parts: clustered-dot periodic halftone screen design, and color table compression.

Screening is a widely used halftoning method. As a consequence of the lower resolution of digital presses and printers, the number of printer-addressable dots or holes in each microcell may be too few to provide the requisite number of tone lev- els between paper white and full colorant coverage. To address this limitation, the microcells can be grouped into supercells. The challenge is then to determine the desired supercell shape …


Approximate Computing: An Integrated Cross-Layer Framework, Swagath Venkataramani Dec 2016

Approximate Computing: An Integrated Cross-Layer Framework, Swagath Venkataramani

Open Access Dissertations

A new design approach, called approximate computing (AxC), leverages the flexibility provided by intrinsic application resilience to realize hardware or software implementations that are more efficient in energy or performance. Approximate computing techniques forsake exact (numerical or Boolean) equivalence in the execution of some of the application’s computations, while ensuring that the output quality is acceptable. While early efforts in approximate computing have demonstrated great potential, they consist of ad hoc techniques applied to a very narrow set of applications, leaving in question the applicability of approximate computing in a broader context.

The primary objective of this thesis is to …


Implementing A Wireless Monitoring Solution For A Biomechanical Telemetry System, Hyung Suk Kim Dec 2016

Implementing A Wireless Monitoring Solution For A Biomechanical Telemetry System, Hyung Suk Kim

Open Access Theses

Sport-related Traumatic Brain Injury (TBI) is one of the major concerns for collision based sports athletes and their families. The ability to measure impacts on the head is imperative to monitor brain injury and prevent serious TBI. Recent research by the Purdue Neurotrauma Group (PNG) indicates that accumulation of subconcussive impacts may cause permanent neurological damage. Currently available commercial impact monitoring systems are designed as an event-based models which collect impact data above pre-determined acceleration thresholds. To track long-term effects of sub-concussive impacts, event-based modeling is inadequate. The PNG developed a biomechanical sports telemetry system that is capable of storing …


Improvement Of A Biomechanical Telemetry System Hardware Platform, Soon Ho Kwon Dec 2016

Improvement Of A Biomechanical Telemetry System Hardware Platform, Soon Ho Kwon

Open Access Theses

Traumatic brain injuries (TBI) while playing sports are a major concern for the general public today. Recently, studies have shown that repetitive subconcussive hits can lead to neurological disorders. In order to prevent the athletes from suffering traumatic brain injuries, many organizations related to contact based sports and the military employ commercialized head impact telemetry systems. However, a majority of the commercialized systems is event based which only collects the linear acceleration that exceeds a certain threshold. To accurately record and utilize the data from the impact telemetry system, it is necessary to record all the linear and angular acceleration …


Conceptual Understanding Of Threshold Concepts Of Electrical Phenomena: Mental Models Of Senior Undergraduates In Electrical Engineering, Mark T. Carnes Dec 2016

Conceptual Understanding Of Threshold Concepts Of Electrical Phenomena: Mental Models Of Senior Undergraduates In Electrical Engineering, Mark T. Carnes

Open Access Dissertations

Every field of study has a set of domain-specific concepts that anyone who desires to work in that field must know and understand. Most students who pursue university degrees in engineering trust that their education is designed to provide them with this knowledge. But does it? In electrical engineering (EE), conceptual understanding of electrical phenomena has rarely been addressed. Even though the presumed goal of instructors and students alike is to learn the concepts of electrical phenomena well enough to be able to use the concepts to design useful things, it is difficult to determine whether this goal is being …


Concurrent Detection And Isolation Of Cellular And Molecular Biomarkers, Wanfeng Huang Dec 2016

Concurrent Detection And Isolation Of Cellular And Molecular Biomarkers, Wanfeng Huang

Open Access Dissertations

Detection of cancer markers such as protein biomolecules and cancer cells in bodily fluids is of great importance in early diagnosis, prognosis as well as evaluation of therapy efficacy. Numerous devices have been developed for detecting either cellular or molecular targets, however there has not yet been a system that can simultaneously detect both cellular and molecular targets effectively. Molecule and cell-based assays are important because each type of target can tell a different story about the state of the disease and the two types of information can potentially be combined and/or compared for more accurate biological or clinical assessments. …


Towards Building A Prototype Spin-Logic Device, Ashish Verma Penumatcha Dec 2016

Towards Building A Prototype Spin-Logic Device, Ashish Verma Penumatcha

Open Access Dissertations

Since the late 1980s, several key discoveries, such as Giant and Tunneling Magne- toresistance, and advances in magnetic materials have paved the way for exponentially higher bit-densities in magnetic storage. In particular, the discovery of Spin-Transfer Torque (STT) has allowed information to be written to individual magnets using spin-currents. This has replaced the more traditional Oersted-field control used in field-MRAMs and allowed further scaling of magnetic-memories. A less obvious con- sequence of STT is that it has made possible a logic-technology based on magnets controlled by spin-polarized currents. Charge-coupled Spin Logic (CSL) is one such device proposal that couples a …


Matrix-Free Time-Domain Methods For General Electromagnetic Analysis, Jin Yan Dec 2016

Matrix-Free Time-Domain Methods For General Electromagnetic Analysis, Jin Yan

Open Access Dissertations

Many engineering challenges demand an efficient computational solution of large-scale problems. If a computational method can be made free of matrix solutions, then it has a potential of solving very large scale problems. Among existing computational electromagnetic methods, the explicit finite-difference time-domain (FDTD) method is free of matrix solutions. However, it requires a structured orthogonal grid for space discretization. In this work, we develop a new time-domain method that naturally requires no matrix solution, regardless of whether the discretization is a structured grid or an unstructured mesh. No dual mesh, interpolation, projection and mass lumping are needed. Furthermore, a time-marching …


A High-Performance Communication Topology For Decentralized Protocols, Raza A. Khan Dec 2016

A High-Performance Communication Topology For Decentralized Protocols, Raza A. Khan

Open Access Theses

Preserving transaction atomicity and ensuring its commitment is key to the maintenance of data integrity in a distributed database. The distributed consensus protocol is a prominent example of a mechanism used to accomplish safe commitment of a distributed transaction. These protocols are based primarily on repeated message exchange among all sites/nodes and their performance is characterized not only by the number of these messages but also by the underlying communication topology. This thesis proposes a measure of performance known as average message complexity and proposes a communication structure based on folded even graphs called the Folded Even Network (FEN). Performance …


Functional Mri In The Presence Of Repetitive, Sub-Concussive Impacts, Trey E. Shenk Nov 2016

Functional Mri In The Presence Of Repetitive, Sub-Concussive Impacts, Trey E. Shenk

Open Access Dissertations

Recent research has raised understanding and awareness of the long-term risks associated with mild traumatic brain injury (mTBI). While much research has focused on the role of concussion (a single event exhibiting clear clinical symptoms), the role of repetitive sub-concussive impacts is not well understood. This study uses functional MRI measurements of high school football players to identify functional changes, even in the absence of clinical symptoms.


Error Resilient Video Coding Using Bitstream Syntax And Iterative Microscopy Image Segmentation, Neeraj Jayant Gadgil Aug 2016

Error Resilient Video Coding Using Bitstream Syntax And Iterative Microscopy Image Segmentation, Neeraj Jayant Gadgil

Open Access Dissertations

There has been a dramatic increase in the amount of video traffic over the Internet in past several years. For applications like real-time video streaming and video conferencing, retransmission of lost packets is often not permitted. Popular video coding standards such as H.26x and VPx make use of spatial-temporal correlations for compression, typically making compressed bitstreams vulnerable to errors. We propose several adaptive spatial-temporal error concealment approaches for subsampling-based multiple description video coding. These adaptive methods are based on motion and mode information extracted from the H.26x video bitstreams. We also present an error resilience method using data duplication in …


Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man Aug 2016

Nanophotonics For Dark Materials, Filters, And Optical Magnetism, Mengren Man

Open Access Dissertations

Research on nanophotonic structures for three application areas is described, a near perfect optical absorber based on a graphene/dielectric stack, an ultraviolet bandpass filter formed with an aluminum/dielectric stack, and structures exhibiting homogenizable magnetic properties at infrared frequencies. The graphene stack can be treated as a effective, homogenized medium that can be designed to reflect little light and absorb an astoundingly high amount per unit thickness, making it an ideal dark material and providing a new avenue for photonic devices based on two-dimensional materials. Another material stack arrangement with thin layers of metal and insulator forms a multi-cavity filter that …


Three Dimensional Moving Pictures With A Single Imager And Microfluidic Lens, Chao Liu Aug 2016

Three Dimensional Moving Pictures With A Single Imager And Microfluidic Lens, Chao Liu

Open Access Dissertations

Three-dimensional movie acquisition and corresponding depth data is commonly generated from multiple cameras and multiple views. This technology has high cost and large size which are limitations for medical devices, military surveillance and current consumer products such as small camcorders and cell phone movie cameras. This research result shows that a single imager, equipped with a fast-focus microfluidic lens, produces a highly accurate depth map. On test material, the depth is found to be an average Root Mean Squared Error (RMSE) of 3.543 gray level steps (1.38\%) accuracy compared to ranging data. The depth is inferred using a new Extended …


Exploring Spin-Transfer-Torque Devices And Memristors For Logic And Memory Applications, Zoha Pajouhi Aug 2016

Exploring Spin-Transfer-Torque Devices And Memristors For Logic And Memory Applications, Zoha Pajouhi

Open Access Dissertations

As scaling CMOS devices is approaching its physical limits, researchers have begun exploring newer devices and architectures to replace CMOS.

Due to their non-volatility and high density, Spin Transfer Torque (STT) devices are among the most prominent candidates for logic and memory applications. In this research, we first considered a new logic style called All Spin Logic (ASL). Despite its advantages, ASL consumes a large amount of static power; thus, several optimizations can be performed to address this issue. We developed a systematic methodology to perform the optimizations to ensure stable operation of ASL.

Second, we investigated reliable design of …


Improving The Resilience Of Cyber-Physical Systems Under Strategic Adversaries, Paul Wood Aug 2016

Improving The Resilience Of Cyber-Physical Systems Under Strategic Adversaries, Paul Wood

Open Access Dissertations

Renewable energy resources challenge traditional energy system operations by substituting the stability and predictability of fossil fuel based generation with the unreliability and uncertainty of wind and solar power. Rising demand for green energy drives grid operators to integrate sensors, smart meters, and distributed control to compensate for this uncertainty and improve the operational efficiency of the grid. Real-time negotiations enable producers and consumers to adjust power loads during shortage periods, such as an unexpected outage or weather event, and to adapt to time-varying energy needs. While such systems improve grid performance, practical implementation challenges can derail the operation of …


Visual Clutter Study For Pedestrian Using Large Scale Naturalistic Driving Data, Kai Yang Aug 2016

Visual Clutter Study For Pedestrian Using Large Scale Naturalistic Driving Data, Kai Yang

Open Access Dissertations

Some of the pedestrian crashes are due to driver’s late or difficult perception of pedestrian’s appearance. Recognition of pedestrians during driving is a complex cognitive activity. Visual clutter analysis can be used to study the factors that affect human visual search efficiency and help design advanced driver assistant system for better decision making and user experience. In this thesis, we propose the pedestrian perception evaluation model which can quantitatively analyze the pedestrian perception difficulty using naturalistic driving data. An efficient detection framework was developed to locate pedestrians within large scale naturalistic driving data. Visual clutter analysis was used to study …


Efficient Inelastic Scattering In Atomistic Tight Binding, James A. Charles Aug 2016

Efficient Inelastic Scattering In Atomistic Tight Binding, James A. Charles

Open Access Theses

In this thesis, the coherent and incoherent transport simulation capabilities of the multipurpose nanodevice simulation tool NEMO5 are presented and applied on transport in tunneling field-effect transistors (TFET). A gentle introduction is given to the non-equilibrium Green's function theory. The comparison with experimental resistivity data confirms the validity of the electron-phonon scattering models. Common pitfalls of numerical implementations such as current conservation, energy mesh resolution, and recursive Green's function stability and the applicability of common approximations of scattering self-energies are discussed. The impact of phonon-assisted tunneling on the performance of TFETs is exemplified with a concrete Si nanowire device. The …


An Led-Based Image Sensor With Energy Harvesting And Projection Capabilities College Of Technology, Xiaozhe Fan Aug 2016

An Led-Based Image Sensor With Energy Harvesting And Projection Capabilities College Of Technology, Xiaozhe Fan

Open Access Theses

The light emitting diode (LED) technology has experienced great improvements in efficiency and cost reduction since the first visible light LED was invented in 1962. At the same time, because LEDs exhibit excellent photovoltaic performance, their capabilities of sensing light and harvesting energy have also been explored and studied for many years. By triple functionality of LEDs, they are widely used in a variety of research areas including visible light communication, robotics, structured light application and so on. Meanwhile, this triple functionality of LEDs also inspired researchers to combine and implement different functions in one system.

In this thesis, An …


Image Quality Estimation: Soft-Ware For Objective Evaluation, He Liu Aug 2016

Image Quality Estimation: Soft-Ware For Objective Evaluation, He Liu

Open Access Theses

Digital images are widely used in our daily lives and the quality of images is important to the viewing experience. Low quality images may be blurry or contain noise or compression artifacts. Humans can easily estimate image quality, but it is not practical to use human subjects to measure image quality in real applications. Image Quality Estimators (QE) are algorithms that evaluate image qualities automatically. These QEs compute scores of any input images to represent their qualities. This thesis mainly focuses on evaluating the performance of QEs. Two approaches used in this work are objective software analysis and the subjective …


Analysis Of Structural And Functional Brain Networks, Jun Young Jeong Aug 2016

Analysis Of Structural And Functional Brain Networks, Jun Young Jeong

Open Access Theses

The brain is a representative example of a network. It consists of numerous spatially distributed regions that continuously exchange information through structural connections. In the past decade, an increasing number of studies have explored the brain network in both structural and functional aspects; they have begun to decipher complex brain wirings, as well as elucidate how the rich functionality emerges from this architecture. Based upon previous studies, this thesis addresses three critical gaps in the field. (I) Although it is known that the community structures of brain network are spatially overlapping, conventional studies have focused on grouping brain regions into …


Exploratory Study Of Students' Representational Fluency And Competence Of Electric Circuits, William Fernando Sandchez Cossio Aug 2016

Exploratory Study Of Students' Representational Fluency And Competence Of Electric Circuits, William Fernando Sandchez Cossio

Open Access Theses

Electric circuits are extensively used in today’s devices as computers, phones, cameras and others. This makes them a crucial topic in engineering because almost every engineering branch could be related of used them at different levels. Even though their importance, students often struggle during the learning process of circuit analysis topics. Additionally, other very important abilities for engineering students are the capacities to create, use, express and think about models and representations of technical concepts; and the capacities to translate and map from one representation to another. These abilities are known as representational competence and representational fluency respectively.

The purpose …


Novel Gain Enhancement Technique For Microstrip Patch Antennas Based On Multi-Pronged Feed Network Synthesis, Brian J. Vaughn Aug 2016

Novel Gain Enhancement Technique For Microstrip Patch Antennas Based On Multi-Pronged Feed Network Synthesis, Brian J. Vaughn

Open Access Theses

Developing antennas with enhanced gain has always been an important pursuit within the antenna community, as a higher gain leads to an increase in the received power for any given wireless link. In general, when a higher gain is needed for an application, only certain types of antennas can be used. The goal of this thesis project was to develop a method for increasing the gain of antennas that already exist by applying modifications to them, expanding the design flexibility for wireless applications. In this thesis, a novel method for increasing the gain of microstrip patch antennas by synthesizing specialized …


Laser Direct Written Silicon Nanowires For Electronic And Sensing Applications, Woongsik Nam Aug 2016

Laser Direct Written Silicon Nanowires For Electronic And Sensing Applications, Woongsik Nam

Open Access Dissertations

Silicon nanowires are promising building blocks for high-performance electronics and chemical/biological sensing devices due to their ultra-small body and high surface-to-volume ratios. However, the lack of the ability to assemble and position nanowires in a highly controlled manner still remains an obstacle to fully exploiting the substantial potential of nanowires. Here we demonstrate a one-step method to synthesize intrinsic and doped silicon nanowires for device applications. Sub-diffraction limited nanowires as thin as 60 nm are synthesized using laser direct writing in combination with chemical vapor deposition, which has the advantages of in-situ doping, catalyst-free growth, and precise control of position, …