Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 29 of 29

Full-Text Articles in Engineering

Reinventing Integrated Photonic Devices And Circuits For High Performance Communication And Computing Applications, Venkata Sai Praneeth Karempudi Jan 2024

Reinventing Integrated Photonic Devices And Circuits For High Performance Communication And Computing Applications, Venkata Sai Praneeth Karempudi

Theses and Dissertations--Electrical and Computer Engineering

The long-standing technological pillars for computing systems evolution, namely Moore's law and Von Neumann architecture, are breaking down under the pressure of meeting the capacity and energy efficiency demands of computing and communication architectures that are designed to process modern data-centric applications related to Artificial Intelligence (AI), Big Data, and Internet-of-Things (IoT). In response, both industry and academia have turned to 'more-than-Moore' technologies for realizing hardware architectures for communication and computing. Fortunately, Silicon Photonics (SiPh) has emerged as one highly promising ‘more-than-Moore’ technology. Recent progress has enabled SiPh-based interconnects to outperform traditional electrical interconnects, offering advantages like high bandwidth density, …


A Flexible Photonic Reduction Network Architecture For Spatial Gemm Accelerators For Deep Learning, Bobby Bose Jan 2023

A Flexible Photonic Reduction Network Architecture For Spatial Gemm Accelerators For Deep Learning, Bobby Bose

Theses and Dissertations--Electrical and Computer Engineering

As deep neural network (DNN) models increase significantly in complexity and size, it has become important to increase the computing capability of specialized hardware architectures typically used for DNN processing. The major linear operations of DNNs, which comprise the fully connected and convolution layers, are commonly converted into general matrix-matrix multiplication (GEMM) operations for acceleration. Specialized GEMM accelerators are typically employed to implement these GEMM operations, where a GEMM operation is decomposed into multiple vector-dot-product operations that run in parallel. A common challenge that arises in modern DNNs is the mismatch between the matrices used for GEMM operations and the …


Application Of Conventional Feedforward And Deep Neural Networks To Power Distribution System State Estimation And State Forecasting, James Paul Carmichael Jan 2023

Application Of Conventional Feedforward And Deep Neural Networks To Power Distribution System State Estimation And State Forecasting, James Paul Carmichael

Theses and Dissertations--Electrical and Computer Engineering

Classical neural networks such as feedforward multilayer perceptron models (MLPs) are well established as universal approximators and as such, show promise in applications such as static state estimation in power transmission systems. This research investigates the application of conventional neural networks (MLPs) and deep learning based models such as convolutional neural networks (CNNs) and long short-term memory networks (LSTMs) to mitigate challenges in power distribution system state estimation and forecasting based upon conventional analytic methods. The ability of MLPs to perform regression to perform power system state estimation will be investigated. MLPs are considered based upon their promise to learn …


Synthesizing Dysarthric Speech Using Multi-Speaker Tts For Dsyarthric Speech Recognition, Mohammad Soleymanpour Jan 2022

Synthesizing Dysarthric Speech Using Multi-Speaker Tts For Dsyarthric Speech Recognition, Mohammad Soleymanpour

Theses and Dissertations--Electrical and Computer Engineering

Dysarthria is a motor speech disorder often characterized by reduced speech intelligibility through slow, uncoordinated control of speech production muscles. Automatic Speech recognition (ASR) systems may help dysarthric talkers communicate more effectively. However, robust dysarthria-specific ASR requires a significant amount of training speech is required, which is not readily available for dysarthric talkers.

In this dissertation, we investigate dysarthric speech augmentation and synthesis methods. To better understand differences in prosodic and acoustic characteristics of dysarthric spontaneous speech at varying severity levels, a comparative study between typical and dysarthric speech was conducted. These characteristics are important components for dysarthric speech modeling, …


Developing Reactive Distributed Aerial Robotics Platforms For Real-Time Contaminant Mapping, Joshua Ashley Jan 2022

Developing Reactive Distributed Aerial Robotics Platforms For Real-Time Contaminant Mapping, Joshua Ashley

Theses and Dissertations--Electrical and Computer Engineering

The focus of this research is to design a sensor data aggregation system and centralized sensor-driven trajectory planning algorithm for fixed-wing aircraft to optimally assist atmospheric simulators in mapping the local environment in real-time. The proposed application of this work is to be used in the event of a hazardous contaminant leak into the atmosphere as a fleet of sensing unmanned aerial vehicles (UAVs) could provide valuable information for evacuation measures. The data aggregation system was designed using a state-of-the-art networking protocol and radio with DigiMesh and a process/data management system in the ROS2 DDS. This system was tested to …


Energy Harvesting And Sensor Based Hardware Security Primitives For Cyber-Physical Systems, Carson Labrado Jan 2021

Energy Harvesting And Sensor Based Hardware Security Primitives For Cyber-Physical Systems, Carson Labrado

Theses and Dissertations--Electrical and Computer Engineering

The last few decades have seen a large proliferation in the prevalence of cyber-physical systems. Although cyber-physical systems can offer numerous advantages to society, their large scale adoption does not come without risks. Internet of Things (IoT) devices can be considered a significant component within cyber-physical systems. They can provide network communication in addition to controlling the various sensors and actuators that exist within the larger cyber-physical system. The adoption of IoT features can also provide attackers with new potential avenues to access and exploit a system's vulnerabilities. Previously, existing systems could more or less be considered a closed system …


Re-Designing Main Memory Subsystems With Emerging Monolithic 3d (M3d) Integration And Phase Change Memory Technologies, Chao-Hsuan Huang Jan 2021

Re-Designing Main Memory Subsystems With Emerging Monolithic 3d (M3d) Integration And Phase Change Memory Technologies, Chao-Hsuan Huang

Theses and Dissertations--Electrical and Computer Engineering

Over the past two decades, Dynamic Random-Access Memory (DRAM) has emerged as the dominant technology for implementing the main memory subsystems of all types of computing systems. However, inferring from several recent trends, computer architects in both the industry and academia have widely accepted that the density (memory capacity per chip area) and latency of DRAM based main memory subsystems cannot sufficiently scale in the future to meet the requirements of future data-centric workloads related to Artificial Intelligence (AI), Big Data, and Internet-of-Things (IoT). In fact, the achievable density and access latency in main memory subsystems presents a very fundamental …


Designing Novel Hardware Security Primitives For Smart Computing Devices, Amitkumar Degada Jan 2021

Designing Novel Hardware Security Primitives For Smart Computing Devices, Amitkumar Degada

Theses and Dissertations--Electrical and Computer Engineering

Smart computing devices are miniaturized electronics devices that can sense their surroundings, communicate, and share information autonomously with other devices to work cohesively. Smart devices have played a major role in improving quality of the life and boosting the global economy. They are ubiquitously present, smart home, smart city, smart girds, industry, healthcare, controlling the hazardous environment, and military, etc. However, we have witnessed an exponential rise in potential threat vectors and physical attacks in recent years. The conventional software-based security approaches are not suitable in the smart computing device, therefore, hardware-enabled security solutions have emerged as an attractive choice. …


Toward Intelligent Welding By Building Its Digital Twin, Qiyue Wang Jan 2021

Toward Intelligent Welding By Building Its Digital Twin, Qiyue Wang

Theses and Dissertations--Electrical and Computer Engineering

To meet the increasing requirements for production on individualization, efficiency and quality, traditional manufacturing processes are evolving to smart manufacturing with the support from the information technology advancements including cyber-physical systems (CPS), Internet of Things (IoT), big industrial data, and artificial intelligence (AI). The pre-requirement for integrating with these advanced information technologies is to digitalize manufacturing processes such that they can be analyzed, controlled, and interacted with other digitalized components. Digital twin is developed as a general framework to do that by building the digital replicas for the physical entities. This work takes welding manufacturing as the case study to …


Resource Efficient Design Of Quantum Circuits For Cryptanalysis And Scientific Computing Applications, Edgard Munoz-Coreas Jan 2020

Resource Efficient Design Of Quantum Circuits For Cryptanalysis And Scientific Computing Applications, Edgard Munoz-Coreas

Theses and Dissertations--Electrical and Computer Engineering

Quantum computers offer the potential to extend our abilities to tackle computational problems in fields such as number theory, encryption, search and scientific computation. Up to a superpolynomial speedup has been reported for quantum algorithms in these areas. Motivated by the promise of faster computations, the development of quantum machines has caught the attention of both academics and industry researchers. Quantum machines are now at sizes where implementations of quantum algorithms or their components are now becoming possible. In order to implement quantum algorithms on quantum machines, resource efficient circuits and functional blocks must be designed. In this work, we …


T-Count Optimization Of Quantum Carry Look-Ahead Adder, Vladislav Ivanovich Khalus Jan 2019

T-Count Optimization Of Quantum Carry Look-Ahead Adder, Vladislav Ivanovich Khalus

Theses and Dissertations--Electrical and Computer Engineering

With the emergence of quantum physics and computer science in the 20th century, a new era was born which can solve very difficult problems in a much faster rate or problems that classical computing just can't solve. In the 21st century, quantum computing needs to be used to solve tough problems in engineering, business, medical, and other fields that required results not today but yesterday. To make this dream come true, engineers in the semiconductor industry need to make the quantum circuits a reality.

To realize quantum circuits and make them scalable, they need to be fault tolerant, …


A Compiler Target Model For Line Associative Registers, Paul S. Eberhart Jan 2019

A Compiler Target Model For Line Associative Registers, Paul S. Eberhart

Theses and Dissertations--Electrical and Computer Engineering

LARs (Line Associative Registers) are very wide tagged registers, used for both register-wide SWAR (SIMD Within a Register )operations and scalar operations on arbitrary fields. LARs include a large data field, type tags, source addresses, and a dirty bit, which allow them to not only replace both caches and registers in the conventional memory hierarchy, but improve on both their functions. This thesis details a LAR-based architecture, and describes the design of a compiler which can generate code for a LAR-based design. In particular, type conversion, alignment, and register allocation are discussed in detail.


Curricular Optimization: Solving For The Optimal Student Success Pathway, William G. Thompson-Arjona Jan 2019

Curricular Optimization: Solving For The Optimal Student Success Pathway, William G. Thompson-Arjona

Theses and Dissertations--Electrical and Computer Engineering

Considering the significant investment of higher education made by students and their families, graduating in a timely manner is of the utmost importance. Delay attributed to drop out or the retaking of a course adds cost and negatively affects a student’s academic progression. Considering this, it becomes paramount for institutions to focus on student success in relation to term scheduling.

Often overlooked, complexity of a course schedule may be one of the most important factors in whether or not a student successfully completes his or her degree. More often than not students entering an institution as a first time full …


Intelligent Uav Scouting For Field Condition Monitoring, Hasan Seyyedhasani Jan 2018

Intelligent Uav Scouting For Field Condition Monitoring, Hasan Seyyedhasani

Theses and Dissertations--Electrical and Computer Engineering

Precision agriculture requires detailed and timely information about field condition. In less than the short flight time a UAV (Unmanned Aerial Vehicle) can provide, an entire field can be scanned at the highest allowed altitude. The resulting NDVI (Normalized Difference Vegetation Index) imagery can then be used to classify each point in the field using a FIS (Fuzzy Inference System). This identifies areas that are expected to be similar, but only closer inspection can quantify and diagnose crop properties. In the remaining flight time, the goal is to scout a set of representative points maximizing the quality of actionable information …


Design Of A Machine Vision Camera For Spatial Augmented Reality, Matt Phillip Ruffner Jan 2018

Design Of A Machine Vision Camera For Spatial Augmented Reality, Matt Phillip Ruffner

Theses and Dissertations--Electrical and Computer Engineering

Structured Light Imaging (SLI) is a means of digital reconstruction, or Three-Dimensional (3D) scanning, and has uses that span many disciplines. A projector, camera and Personal Computer (PC) are required to perform such 3D scans. Slight variances in synchronization between these three devices can cause malfunctions in the process due to the limitations of PC graphics processors as real-time systems. Previous work used a Field Programmable Gate Array (FPGA) to both drive the projector and trigger the camera, eliminating these timing issues, but still needing an external camera. This thesis proposes the incorporation of the camera with the FPGA SLI …


Iot Development For Healthy Independent Living, Shalom Greene Jan 2017

Iot Development For Healthy Independent Living, Shalom Greene

Theses and Dissertations--Electrical and Computer Engineering

The rise of internet connected devices has enabled the home with a vast amount of enhancements to make life more convenient. These internet connected devices can be used to form a community of devices known as the internet of things (IoT). There is great value in IoT devices to promote healthy independent living for older adults.

Fall-related injuries has been one of the leading causes of death in older adults. For example, every year more than a third of people over 65 in the U.S. experience a fall, of which up to 30 percent result in moderate to severe injury. …


Novel Resource Efficient Circuit Designs For Rebooting Computing, Sai Subramanya Varun Thogarcheti Jan 2017

Novel Resource Efficient Circuit Designs For Rebooting Computing, Sai Subramanya Varun Thogarcheti

Theses and Dissertations--Electrical and Computer Engineering

CMOS based computing is reaching its limits. To take computation beyond Moores law (the number of transistors and hence processing power on a chip doubles every 18 months to 3 years) requires research explorations in (i) new materials, devices, and processes, (ii) new architectures and algorithms, (iii) new paradigm of logic bit representation. The focus is on fundamental new ways to compute under the umbrella of rebooting computing such as spintronics, quantum computing, adiabatic and reversible computing. Therefore, this thesis highlights explicitly Quantum computing and Adiabatic logic, two new computing paradigms that come under the umbrella of rebooting computing. Quantum …


Hierarchical Implementation Of Aggregate Functions, Pablo Quevedo Jan 2017

Hierarchical Implementation Of Aggregate Functions, Pablo Quevedo

Theses and Dissertations--Electrical and Computer Engineering

Most systems in HPC make use of hierarchical designs that allow multiple levels of parallelism to be exploited by programmers. The use of multiple multi-core/multi-processor computers to form a computer cluster supports both fine-grain and large-grain parallel computation. Aggregate function communications provide an easy to use and efficient set of mechanisms for communicating and coordinating between processing elements, but the model originally targeted only fine grain parallel hardware. This work shows that a hierarchical implementation of aggregate functions is a viable alternative to MPI (the standard Message Passing Interface library) for programming clusters that provide both fine grain and large …


Per-Pixel Calibration For Rgb-Depth Natural 3d Reconstruction On Gpu, Sen Li Jan 2016

Per-Pixel Calibration For Rgb-Depth Natural 3d Reconstruction On Gpu, Sen Li

Theses and Dissertations--Electrical and Computer Engineering

Ever since the Kinect brought low-cost depth cameras into consumer market, great interest has been invigorated into Red-Green-Blue-Depth (RGBD) sensors. Without calibration, a RGBD camera’s horizontal and vertical field of view (FoV) could help generate 3D reconstruction in camera space naturally on graphics processing unit (GPU), which however is badly deformed by the lens distortions and imperfect depth resolution (depth distortion). The camera’s calibration based on a pinhole-camera model and a high-order distortion removal model requires a lot of calculations in the fragment shader. In order to get rid of both the lens distortion and the depth distortion …


Stargrazer One: A New Architecture For Distributed Maximum Power Point Tracking Of Solar Photovoltaic Sources, Edgard Munoz-Coreas Jan 2015

Stargrazer One: A New Architecture For Distributed Maximum Power Point Tracking Of Solar Photovoltaic Sources, Edgard Munoz-Coreas

Theses and Dissertations--Electrical and Computer Engineering

The yield from a solar photovoltaic (PV) source is dependent on factors such as light and temperature. A control system called a maximum power point tracker (MPPT) ensures that the yield from a solar PV source is maximized in spite of these factors. This thesis presents a novel implementation of a perturb and observe (PO) MPPT.

The implementation uses a switched capacitor step down converter and a custom digital circuit implementation of the PO algorithm. Working in tandem, the switched capacitor step down converter and the custom digital circuit implementation were able to successfully track the maximum power point of …


Hybrid Single And Dual Pattern Structured Light Illumination, Minghao Wang Jan 2015

Hybrid Single And Dual Pattern Structured Light Illumination, Minghao Wang

Theses and Dissertations--Electrical and Computer Engineering

Structured Light Illumination is a widely used 3D shape measurement technique in non-contact surface scanning. Multi-pattern based Structured Light Illumination methods reconstruct 3-D surface with high accuracy, but are sensitive to object motion during the pattern projection and the speed of scanning process is relatively long. To reduce this sensitivity, single pattern techniques are developed to achieve a high speed scanning process, such as Composite Pattern (CP) and Modified Composite Pattern (MCP) technique. However, most of single patter techniques have a significant banding artifact and sacrifice the accuracy. We focus on developing SLI techniques can achieve both high speed, high …


Virtualized Welding Based Learning Of Human Welder Behaviors For Intelligent Robotic Welding, Yukang Liu Jan 2014

Virtualized Welding Based Learning Of Human Welder Behaviors For Intelligent Robotic Welding, Yukang Liu

Theses and Dissertations--Electrical and Computer Engineering

Combining human welder (with intelligence and sensing versatility) and automated welding robots (with precision and consistency) can lead to next generation intelligent welding systems. In this dissertation intelligent welding robots are developed by process modeling / control method and learning the human welder behavior.

Weld penetration and 3D weld pool surface are first accurately controlled for an automated Gas Tungsten Arc Welding (GTAW) machine. Closed-form model predictive control (MPC) algorithm is derived for real-time welding applications. Skilled welder response to 3D weld pool surface by adjusting the welding current is then modeled using Adaptive Neuro-Fuzzy Inference System (ANFIS), and compared …


Robomirror: A Simulated Mirror Display With A Robotic Camera, Yuqi Zhang Jan 2014

Robomirror: A Simulated Mirror Display With A Robotic Camera, Yuqi Zhang

Theses and Dissertations--Electrical and Computer Engineering

Simulated mirror displays have a promising prospect in applications, due to its capability for virtual visualization. In most existing mirror displays, cameras are placed on top of the displays and unable to capture the person in front of the display at the highest possible resolution. The lack of a direct frontal capture of the subject's face and the geometric error introduced by image warping techniques make realistic mirror image rendering a challenging problem. The objective of this thesis is to explore the use of a robotic camera in tracking the face of the subject in front of the display to …


Efficient Anonymous Biometric Matching In Privacy-Aware Environments, Ying Luo Jan 2014

Efficient Anonymous Biometric Matching In Privacy-Aware Environments, Ying Luo

Theses and Dissertations--Electrical and Computer Engineering

Video surveillance is an important tool used in security and environmental monitoring, however, the widespread deployment of surveillance cameras has raised serious privacy concerns. Many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. To identify these individuals for protection, the most reliable approach is to use biometric signals as they are immutable and highly discriminative. If misused, these characteristics of biometrics can seriously defeat the goal of privacy protection. In this dissertation, an Anonymous Biometric Access Control (ABAC) procedure is proposed based on biometric signals for privacy-aware video surveillance. …


Fpga-Based Implementation Of Dual-Frequency Pattern Scheme For 3-D Shape Measurement, Brent Bondehagen Jan 2013

Fpga-Based Implementation Of Dual-Frequency Pattern Scheme For 3-D Shape Measurement, Brent Bondehagen

Theses and Dissertations--Electrical and Computer Engineering

Structured Light Illumination (SLI) is the process where spatially varied patterns are projected onto a 3-D surface and based on the distortion by the surface topology, phase information can be calculated and a 3D model constructed. Phase Measuring Profilometry (PMP) is a particular type of SLI that requires three or more patterns temporarily multiplexed. High speed PMP attempts to scan moving objects whose motion is small so as to have little impact on the 3-D model. Given that practically all machine vision cameras and high speed cameras employ a Field Programmable Gate Array (FPGA) interface directly to the image sensors, …


Independent Component Analysis Enhancements For Source Separation In Immersive Audio Environments, Yue Zhao Jan 2013

Independent Component Analysis Enhancements For Source Separation In Immersive Audio Environments, Yue Zhao

Theses and Dissertations--Electrical and Computer Engineering

In immersive audio environments with distributed microphones, Independent Component Analysis (ICA) can be applied to uncover signals from a mixture of other signals and noise, such as in a cocktail party recording. ICA algorithms have been developed for instantaneous source mixtures and convolutional source mixtures. While ICA for instantaneous mixtures works when no delays exist between the signals in each mixture, distributed microphone recordings typically result various delays of the signals over the recorded channels. The convolutive ICA algorithm should account for delays; however, it requires many parameters to be set and often has stability issues. This thesis introduces the …


A Robust Rgb-D Slam System For 3d Environment With Planar Surfaces, Po-Chang Su Jan 2013

A Robust Rgb-D Slam System For 3d Environment With Planar Surfaces, Po-Chang Su

Theses and Dissertations--Electrical and Computer Engineering

Simultaneous localization and mapping is the technique to construct a 3D map of unknown environment. With the increasing popularity of RGB-depth (RGB-D) sensors such as the Microsoft Kinect, there have been much research on capturing and reconstructing 3D environments using a movable RGB-D sensor. The key process behind these kinds of simultaneous location and mapping (SLAM) systems is the iterative closest point or ICP algorithm, which is an iterative algorithm that can estimate the rigid movement of the camera based on the captured 3D point clouds. While ICP is a well-studied algorithm, it is problematic when it is used in …


Power-Efficient And Low-Latency Memory Access For Cmp Systems With Heterogeneous Scratchpad On-Chip Memory, Zhi Chen Jan 2013

Power-Efficient And Low-Latency Memory Access For Cmp Systems With Heterogeneous Scratchpad On-Chip Memory, Zhi Chen

Theses and Dissertations--Electrical and Computer Engineering

The gradually widening speed disparity of between CPU and memory has become an overwhelming bottleneck for the development of Chip Multiprocessor (CMP) systems. In addition, increasing penalties caused by frequent on-chip memory accesses have raised critical challenges in delivering high memory access performance with tight power and latency budgets. To overcome the daunting memory wall and energy wall issues, this thesis focuses on proposing a new heterogeneous scratchpad memory architecture which is configured from SRAM, MRAM, and Z-RAM. Based on this architecture, we propose two algorithms, a dynamic programming and a genetic algorithm, to perform data allocation to different memory …


A Comprehensive Hdl Model Of A Line Associative Register Based Architecture, Matthew A. Sparks Jan 2013

A Comprehensive Hdl Model Of A Line Associative Register Based Architecture, Matthew A. Sparks

Theses and Dissertations--Electrical and Computer Engineering

Modern processor architectures suffer from an ever increasing gap between processor and memory performance. The current memory-register model attempts to hide this gap by a system of cache memory. Line Associative Registers(LARs) are proposed as a new system to avoid the memory gap by pre-fetching and associative updating of both instructions and data. This thesis presents a fully LAR-based architecture, targeting a previously developed instruction set architecture. This architecture features an execution pipeline supporting SWAR operations, and a memory system supporting the associative behavior of LARs and lazy writeback to memory.