Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Biomedical Engineering and Bioengineering

Tissue engineering

USF Tampa Graduate Theses and Dissertations

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Biophysical Characterization And Theoretical Analysis Of Molecular Mechanisms Underlying Cell Interactions With Poly(N-Isopropylacrylamide) Hydrogels, Michael C. Cross Jun 2016

Biophysical Characterization And Theoretical Analysis Of Molecular Mechanisms Underlying Cell Interactions With Poly(N-Isopropylacrylamide) Hydrogels, Michael C. Cross

USF Tampa Graduate Theses and Dissertations

So-called, “Dynamic biomaterials” comprised of stimuli-responsive hydrogels are useful in a wide variety of biomedical applications including tissue engineering, drug delivery, and biomedical implants. More than 150,000 peer-reviewed articles (as of 2016) have been published on these materials, and more specifically, over 100,000 of these are on the most widely studied, poly(N-isopropylacrylamide). This thermoresponsive polymer in a crosslinked hydrogel network undergoes a large volume phase transition (𝑉/𝑉0 ~ 10 − 100) within a small temperature range (𝑇 ~ 1 − 3𝐾) making it particularly useful for tissue engineering applications because of the ability to control the topographical configuration of …


Shape-Shifting Surfaces For Rapid Release And Direct Stamping Of Organized Micro-Tissues, Samuel James Dupont Jan 2012

Shape-Shifting Surfaces For Rapid Release And Direct Stamping Of Organized Micro-Tissues, Samuel James Dupont

USF Tampa Graduate Theses and Dissertations

The primary aim of the research in this study is to develop a robust and simple platform for the in vitro organization of cells on surfaces which facilitate rapid cell release and allows for the direct stamping of highly organized micro-tissues. Current approaches towards this goal have been very successful but are lengthy and subject cells to harsh conditions for extended periods of time raising questions regarding cell health and maintenance of physiological state. To address these concerns a platform was developed to allow for rapid cell release by utilizing a release mechanism different from previous work.

Micron-scale structures comprised …