Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Secure Mobile Computing By Using Convolutional And Capsule Deep Neural Networks, Rui Ning Aug 2020

Secure Mobile Computing By Using Convolutional And Capsule Deep Neural Networks, Rui Ning

Electrical & Computer Engineering Theses & Disssertations

Mobile devices are becoming smarter to satisfy modern user's increasing needs better, which is achieved by equipping divers of sensors and integrating the most cutting-edge Deep Learning (DL) techniques. As a sophisticated system, it is often vulnerable to multiple attacks (side-channel attacks, neural backdoor, etc.). This dissertation proposes solutions to maintain the cyber-hygiene of the DL-Based smartphone system by exploring possible vulnerabilities and developing countermeasures.

First, I actively explore possible vulnerabilities on the DL-Based smartphone system to develop proactive defense mechanisms. I discover a new side-channel attack on smartphones using the unrestricted magnetic sensor data. I demonstrate that attackers ...


Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson Oct 2019

Demonstration Of Visible And Near Infrared Raman Spectrometers And Improved Matched Filter Model For Analysis Of Combined Raman Signals, Alexander Matthew Atkinson

Electrical & Computer Engineering Theses & Disssertations

Raman spectroscopy is a powerful analysis technique that has found applications in fields such as analytical chemistry, planetary sciences, and medical diagnostics. Recent studies have shown that analysis of Raman spectral profiles can be greatly assisted by use of computational models with achievements including high accuracy pure sample classification with imbalanced data sets and detection of ideal sample deviations for pharmaceutical quality control. The adoption of automated methods is a necessary step in streamlining the analysis process as Raman hardware becomes more advanced. Due to limits in the architectures of current machine learning based Raman classification models, transfer from pure ...


Non-Destructive Evaluation For Composite Material, Desalegn Temesgen Delelegn Jul 2018

Non-Destructive Evaluation For Composite Material, Desalegn Temesgen Delelegn

Electrical & Computer Engineering Theses & Disssertations

The Nondestructive Evaluation Sciences Branch (NESB) at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) has conducted impact damage experiments over the past few years with the goal of understanding structural defects in composite materials. The Data Science Team within the NASA LaRC Office of the Chief Information Officer (OCIO) has been working with the Non-Destructive Evaluation (NDE) subject matter experts (SMEs), Dr. Cheryl Rose, from the Structural Mechanics & Concepts Branch and Dr. William Winfree, from the Research Directorate, to develop computer vision solutions using digital image processing and machine learning techniques that can help identify the ...


Speech Based Machine Learning Models For Emotional State Recognition And Ptsd Detection, Debrup Banerjee Jul 2017

Speech Based Machine Learning Models For Emotional State Recognition And Ptsd Detection, Debrup Banerjee

Electrical & Computer Engineering Theses & Disssertations

Recognition of emotional state and diagnosis of trauma related illnesses such as posttraumatic stress disorder (PTSD) using speech signals have been active research topics over the past decade. A typical emotion recognition system consists of three components: speech segmentation, feature extraction and emotion identification. Various speech features have been developed for emotional state recognition which can be divided into three categories, namely, excitation, vocal tract and prosodic. However, the capabilities of different feature categories and advanced machine learning techniques have not been fully explored for emotion recognition and PTSD diagnosis. For PTSD assessment, clinical diagnosis through structured interviews is a ...


Tree-D-Seek: A Framework For Retrieving Three-Dimensional Scenes, Saurav Mazumdar Apr 2009

Tree-D-Seek: A Framework For Retrieving Three-Dimensional Scenes, Saurav Mazumdar

Electrical & Computer Engineering Theses & Disssertations

In this dissertation, a strategy and framework for retrieving 3D scenes is proposed. The strategy is to retrieve 3D scenes based on a unified approach for indexing content from disparate information sources and information levels. The TREE-D-SEEK framework implements the proposed strategy for retrieving 3D scenes and is capable of indexing content from a variety of corpora at distinct information levels. A semantic annotation model for indexing 3D scenes in the TREE-D-SEEK framework is also proposed. The semantic annotation model is based on an ontology for rapid prototyping of 3D virtual worlds.

With ongoing improvements in computer hardware and 3D ...


Learning As A Nonlinear Line Of Attraction For Pattern Association, Classification And Recognition, Ming-Jung Seow Jul 2006

Learning As A Nonlinear Line Of Attraction For Pattern Association, Classification And Recognition, Ming-Jung Seow

Electrical & Computer Engineering Theses & Disssertations

Development of a mathematical model for learning a nonlinear line of attraction is presented in this dissertation, in contrast to the conventional recurrent neural network model in which the memory is stored in an attractive fixed point at discrete location in state space. A nonlinear line of attraction is the encapsulation of attractive fixed points scattered in state space as an attractive nonlinear line, describing patterns with similar characteristics as a family of patterns.

It is usually of prime imperative to guarantee the convergence of the dynamics of the recurrent network for associative learning and recall. We propose to alter ...


Recognition Of Quadric Surfaces From Range Data: An Analytical Approach, Ivan X. D. D'Cunha Apr 1993

Recognition Of Quadric Surfaces From Range Data: An Analytical Approach, Ivan X. D. D'Cunha

Electrical & Computer Engineering Theses & Disssertations

In this dissertation, a new technique based on analytic geometry for the recognition and description of three-dimensional quadric surfaces from range images is presented. Beginning with the explicit representation of quadrics, a set of ten coefficients are determined for various three-dimensional surfaces. For each quadric surface, a unique set of two-dimensional curves which serve as a feature set is obtained from the various angles at which the object is intersected with a plane. Based on a discriminant method, each of the curves is classified as a parabola, circle, ellipse, hyperbola, or a line. Each quadric surface is shown to be ...