Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Artificial Intelligence and Robotics

Kennesaw State University

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Finding A Viable Neural Network Architecture For Use With Upper Limb Prosthetics, Maxwell Lavin Dec 2019

Finding A Viable Neural Network Architecture For Use With Upper Limb Prosthetics, Maxwell Lavin

Master of Science in Computer Science Theses

This paper attempts to answer the question of if it’s possible to produce a simple, quick, and accurate neural network for the use in upper-limb prosthetics. Through the implementation of convolutional and artificial neural networks and feature extraction on electromyographic data different possible architectures are examined with regards to processing time, complexity, and accuracy. It is found that the most accurate architecture is a multi-entry categorical cross entropy convolutional neural network with 100% accuracy. The issue is that it is also the slowest method requiring 9 minutes to run. The next best method found was a single-entry binary cross ...


Automatic Identification Of Animals In The Wild: A Comparative Study Between C-Capsule Networks And Deep Convolutional Neural Networks., Joel Kamdem Teto, Ying Xie Nov 2018

Automatic Identification Of Animals In The Wild: A Comparative Study Between C-Capsule Networks And Deep Convolutional Neural Networks., Joel Kamdem Teto, Ying Xie

Master of Science in Computer Science Theses

The evolution of machine learning and computer vision in technology has driven a lot of

improvements and innovation into several domains. We see it being applied for credit decisions, insurance quotes, malware detection, fraud detection, email composition, and any other area having enough information to allow the machine to learn patterns. Over the years the number of sensors, cameras, and cognitive pieces of equipment placed in the wilderness has been growing exponentially. However, the resources (human) to leverage these data into something meaningful are not improving at the same rate. For instance, a team of scientist volunteers took 8.4 ...