Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Aerospace Engineering

2023

Institution
Keyword
Publication

Articles 1 - 30 of 195

Full-Text Articles in Engineering

Depressurization Characteristics Of Steam-Based Reciprocating Vacuum Pump, Hongling Deng Dec 2023

Depressurization Characteristics Of Steam-Based Reciprocating Vacuum Pump, Hongling Deng

Dissertations

This dissertation introduces a novel vacuum technology that leverages low-pressure saturated steam and cooling-controlled condensation, offering an efficient way to utilize low-grade thermal energy sources like waste heat, steam, or solar energy. At the heart of this technology is a unique duo-chamber vacuum pump system, featuring a reciprocating piston and a heat-conductive wall, designed to generate a vacuum through steam-condensation and cooling processes.

The core of this research lies in developing and validating mechanistic models for the steam-condensation depressurization process, a complex phenomenon involving phase change and transport mechanisms. Prior to this work, these mechanisms were not sufficiently modeled or …


Aerodynamic Dimpling For The Nose Cone Of A High-Power Competition Rocket, Graham Geoffrey Monroe Dec 2023

Aerodynamic Dimpling For The Nose Cone Of A High-Power Competition Rocket, Graham Geoffrey Monroe

Mechanical Engineering ETDs

This thesis investigates nose cone dimpling for the reduction of the aerodynamic drag of a Level 3 High-Power amateur rocket. Two rocket launches were conducted. The first used a COTS nose cone with a smooth surface. A dimple distribution was created according to dimensions calculated by Sandia National Laboratories’ proprietary Right- Size Dimple Evaluator. A dimpled nose cone, designed with geometry matching the COTS component, was 3D printed. Axial acceleration and barometric pressure data, recorded by an onboard flight computer, were used to calculate and plot the drag coefficient as a function of the Reynolds number for the smooth and …


Stochastic Point Process Modeling For Engineering Applications, Samarth Motagi Dec 2023

Stochastic Point Process Modeling For Engineering Applications, Samarth Motagi

Doctoral Dissertations and Master's Theses

Hawkes model or self-exciting point process model is a branching point process model. The model classifies the dataset of discrete events to background and offspring events. It has been used to study interconnected events in many fields, but relatively little work exists in applying these concepts to engineering problems. In our research, we use a self-exciting point process model for two engineering applications: (a) To identify secondary crashes from a given traffic data and (b) To quantify the agglomeration state and size of nanoparticles from computationally generated carbon nanotube microstructure using stochastic percolation model and experimentally generated titanium nanoparticle microstructures. …


Deep-Learning Based Multiple-Model Bayesian Architecture For Spacecraft Fault Estimation, Rocio Jado Puente Dec 2023

Deep-Learning Based Multiple-Model Bayesian Architecture For Spacecraft Fault Estimation, Rocio Jado Puente

Doctoral Dissertations and Master's Theses

This thesis presents recent findings regarding the performance of an intelligent architecture designed for spacecraft fault estimation. The approach incorporates a collection of systematically organized autoencoders within a Bayesian framework, enabling early detection and classification of various spacecraft faults such as reaction-wheel damage, sensor faults, and power system degradation.

To assess the effectiveness of this architecture, a range of performance metrics is employed. Through extensive numerical simulations and in-lab experimental testing utilizing a dedicated spacecraft testbed, the capabilities and accuracy of the proposed intelligent architecture are analyzed. These evaluations provide valuable insights into the architecture's ability to detect and classify …


Verification And Validation Of Robot Manipulator Adaptive Control With Actuator Deficiency, Sebastian Comeaux Dec 2023

Verification And Validation Of Robot Manipulator Adaptive Control With Actuator Deficiency, Sebastian Comeaux

Doctoral Dissertations and Master's Theses

This work addresses the joint tracking problem of robotic manipulators with uncertain dynamical parameters and actuator deficiencies, in the form of an uncertain control effectiveness matrix, through adaptive control design, simulation, and experimentation. Specifically, two novel adaptive controller formulations are implemented and tested via simulation and experimentation. The proposed adaptive control formulations are designed to compensate for uncertainties in the dynamical system parameters as well as uncertainties in the control effectiveness matrix that pre-multiplies the control input. The uncertainty compensation of the dynamical parameters is achieved via the use of the desired model compensation–based adaptation, while the uncertainties related to …


Artificial Intelligence-Assisted Inertial Geomagnetic Passive Navigation, Andrei Cuenca Dec 2023

Artificial Intelligence-Assisted Inertial Geomagnetic Passive Navigation, Andrei Cuenca

Doctoral Dissertations and Master's Theses

In recent years, the integration of machine learning techniques into navigation systems has garnered significant interest due to their potential to improve estimation accuracy and system robustness. This doctoral dissertation investigates the use of Deep Learning combined with a Rao-Blackwellized Particle Filter for enhancing geomagnetic navigation in airborne simulated missions.

A simulation framework is developed to facilitate the evaluation of the proposed navigation system. This framework includes a detailed aircraft model, a mathematical representation of the Earth's magnetic field, and the incorporation of real-world magnetic field data obtained from online databases. The setup allows an accurate assessment of the performance …


Robotic Arms For Microgravity Manufacturing, Connor Talley, Joshua Diamond, Mickael Bah Dec 2023

Robotic Arms For Microgravity Manufacturing, Connor Talley, Joshua Diamond, Mickael Bah

Senior Design Project For Engineers

There is a need to reduce manufacturing cost in space to avoid sending earth manufactured parts that could suffer damage during launch. The proposed idea consists of a dual robotic arm system attached on a precision gantry setup. The team developed an innovative design that is flexible and efficient for different assemblies, improving space manufacturing. With its two specialized robotic arms, our system maximizes versatility by catering to a wide variety of applications from manufacturing to assembly. The dual arms made of Al 7075 coupled with the gantry provides stability and performance in microgravity environments.


Investigation And Control Of Görtler Vortices In High-Speed Flows, Omar Es-Sahli Dec 2023

Investigation And Control Of Görtler Vortices In High-Speed Flows, Omar Es-Sahli

Theses and Dissertations

High-amplitude freestream turbulence and surface roughness elements can excite a laminar boundary-layer flow sufficiently enough to cause streamwise-oriented vortices to develop. These vortices resemble elongated streaks having alternate spanwise variations of the streamwise velocity. Following the transient growth phase, the fully developed vortex structures downstream undergo an inviscid secondary instability mechanism and, ultimately, transition to turbulence. This mechanism becomes much more complicated in high-speed boundary layer flows due to compressibility and thermal effects, which become more significant for higher Mach numbers. In this research, we formulate and test an optimal control algorithm to suppress the growth rate of the aforementioned …


Comparative Evaluation Of Propulsive Power Transmission Technologies For High-Speed Vertical Takeoff And Landing (Hsvtol) Cargo Aircraft, Xinyu Yang Dec 2023

Comparative Evaluation Of Propulsive Power Transmission Technologies For High-Speed Vertical Takeoff And Landing (Hsvtol) Cargo Aircraft, Xinyu Yang

Doctoral Dissertations and Master's Theses

Designing High-Speed Vertical Takeoff and Landing (HSVTOL) cargo aircraft capable of both low downwash velocity hovering and high subsonic speed cruising presents a significant engineering challenge. This challenge, stemming from conflicting design requirements, has been substantially influenced by recent technological advancements, which have offered greater flexibility in rotor placement. Consequently, this has led to the emergence of innovative mission-specific designs that hold the potential to outperform traditional concepts. The central objective of this study is to evaluate the benefits of modern technologies for VTOL cargo aircraft and assess their performance relative to baseline VTOL aircraft. The results of this comparative …


Development Of A Constellation Simulator For A 5g/Iot Mission Planning System, Franco Criscola Dec 2023

Development Of A Constellation Simulator For A 5g/Iot Mission Planning System, Franco Criscola

Doctoral Dissertations and Master's Theses

The advancement of 5G and Internet-of-Things technologies has presented new challenges for telecommunications providers. One of the challenges is integrating these technologies with present networks. A solution has been found in low-Earth orbit satellite constellations. On one hand, this method increases coverage and reduces costs, but on the other it raises new problems like how to efficiently manage large constellations of spacecraft. This thesis introduces the Constellation Management System, developed in collaboration with i2Cat foundation. This novel tool is composed of two modules: the simulator and the scheduler. The former propagates satellite motion and computes visibility events to various targets …


An Optimization Procedure To Design Nozzle Contours For Hypersonic Wind Tunnels, Omar Antonio Dominguez Dec 2023

An Optimization Procedure To Design Nozzle Contours For Hypersonic Wind Tunnels, Omar Antonio Dominguez

Open Access Theses & Dissertations

Supersonic wind tunnels allow scientists and researchers to evaluate and analyze the behaviors of objects under real-life conditions when subjected to supersonic speeds. One of the main complexities when building a wind tunnel is the design of the convergent-divergent nozzle that is used to produce high-speed and high-quality flows. To achieve supersonic speeds, this nozzle adopts a specialized approach that incorporates the complexities of flow compressibility. The compressible effect is accurately evaluated using isentropic relations, allowing for precise determination of stagnation pressure and temperature, and static pressure and temperature relevant to the desired Mach number. Isentropic equations used to define …


Safe Navigation Of Quadruped Robots Using Density Functions, Andrew Zheng Dec 2023

Safe Navigation Of Quadruped Robots Using Density Functions, Andrew Zheng

All Theses

Safe navigation of mission-critical systems is of utmost importance in many modern autonomous applications. Over the past decades, the approach to the problem has consisted of using probabilistic methods, such as sample-based planners, to generate feasible, safe solutions to the navigation problem. However, these methods use iterative safety checks to guarantee the safety of the system, which can become quite complex. The navigation problem can also be solved in feedback form using potential field methods. Navigation function, a class of potential field methods, is an analytical control design to give almost everywhere convergence properties, but under certain topological constraints and …


Testing And Implementation Of Attitude Determination & Control System For Arksat-1 Cubesatellite, Cassandra Sands Dec 2023

Testing And Implementation Of Attitude Determination & Control System For Arksat-1 Cubesatellite, Cassandra Sands

Graduate Theses and Dissertations

ARKSAT-1 is a CubeSatellite (CubeSat) developed at the University of Arkansas and launched to the International Space Station on SpaceX mission SPX-27 launching from Kennedy Space Center as part of the NASA’s 8th CubeSat Launch Initiative CSLI-8. ARKSAT-1’s payload features a high-powered LED, the Solid State Inflatable Balloon (SSIB) deorbiting system applicable to small satellites, and a series of InfraRed and Visible cameras. To point the LED or take images of desired observational targets, the spacecraft will need to be able to determine its orientation within its orbit, as well as rotate. This will be achieved through the use of …


Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams Dec 2023

Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams

All Dissertations

While Carbon Fiber Reinforced Polymers (CFRPs) have exceptional mechanical properties concerning their overall weight, their failure profile in demanding high-stress environments raises reliability concerns in structural applications. Two crucial limiting factors in CFRP reliability are low-strain material degradation and low fracture toughness. Due to CFRP’s low strain degradation characteristics, a wide variety of interlaminar damage can be sustained without any appreciable change to the physical structure itself. This damage suffered by the energy transfer from high- stress levels appears in the form of microporosity, crazes, microcracks, and delamination in the matrix material before any severe laminate damage is observed. This …


Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt Dec 2023

Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt

All Dissertations

Remotely actuated microscale swimming robots have the potential to revolutionize many aspects of biomedicine. However, for the longterm goals of this field of research to be achievable, it is necessary to develop modelling, simulation, and control strategies which effectively and efficiently account for not only the motion of individual swimmers, but also the complex interactions of such swimmers with their environment including other nearby swimmers, boundaries, other cargo and passive particles, and the fluid medium itself. The aim of this thesis is to study these problems in simulation from the perspective of controls and dynamical systems, with a particular focus …


Development Of Load Measurement Technique For Arbitrary Shapes, Quintin J. Cockrell Dec 2023

Development Of Load Measurement Technique For Arbitrary Shapes, Quintin J. Cockrell

Master's Theses

Obtaining aerodynamic forces and moments about all three orthogonal axes for arbitrary shapes at arbitrary orientations in a fast manner via a measurement technique specific to Cal Poly’s low-speed wind tunnel to continually obtain the forces and moments under quasi-steady conditions is explored. A Continuous Rotation Technique (CR) uses a 6-DOF load cell and stepper motor to rotate an object about an axis for a complete rotation. The forces and moments acting upon the object pass through the stepper motor and interface plates and recorded by the load cell as the object is rotated continuously a finite number of rotations. …


Launch Vibration Attenuation For In-Space Assembly Cargo, Jered Bell Dec 2023

Launch Vibration Attenuation For In-Space Assembly Cargo, Jered Bell

Master's Theses

This thesis investigates the implementation of a passive isolator with a pressurized air cushion for spacecraft payloads in mission architectures implementing in-space assembly technologies. A pressurized air bed capable of briefly surviving the space environment for cargo delivery was prototyped and experimentally evaluated for launch vehicle vibration dynamics resulting in a 72%, 93%, and 88% reduction in experienced GRMS loads for the X-Axis, Y-Axis, and Z-Axis, respectively. A preliminary Total Mass Loss evaluation of the Low-Density Polyethylene Film utilized for the air bed resulted in a mass loss of 0.7%, indicating that commercial off-the-shelf films might require minimal modification for …


Parametric Optimization Of A Wing-Fuselage System Using A Vorticity-Based Panel Solver, Chino Cruz Dec 2023

Parametric Optimization Of A Wing-Fuselage System Using A Vorticity-Based Panel Solver, Chino Cruz

Master's Theses

Aerodynamic topology optimization is a useful tool in the aerodynamic design pro-
cess, especially when looking for marginal gains within a design. One example is
a turboprop racer concept aircraft that is designed with the goal of breaking world
speed records. An optimization framework was developed with the intention of later
being applied to this design. In the early design stages, the optimization framework
must focus on quicker methods of drag estimation, such as a panel codes. The large
number of design variables in topology optimization can exponentially increase func-
tion evaluations and thus computational cost. A vorticity-based panel solver …


Optimization Of High-Order Statistical Moment Combinations To Best Represent Spray Flow Particle Probability Density Functions, Amanda Lynn Myers Dec 2023

Optimization Of High-Order Statistical Moment Combinations To Best Represent Spray Flow Particle Probability Density Functions, Amanda Lynn Myers

Theses and Dissertations

Characterizing spray flows has been an issue of interest for years, particularly in regards to fuel injection in engines. Droplet velocity and diameter, among other characteristics, are crucial to understanding spray flows. One approach for determining these quantities in a spray is using a statistical approach that solves for the moments of droplet characteristics as they evolve in space and time. A theoretical probability density function (PDF) can be formulated using various combinations of moments which evolve according to derived moment transport equations (thus evolving the PDF), using the principle of maximum entropy as closure to the system. Building upon …


Experiments And Simulations Of Liquid Mass Gauging And Slosh Dynamics In Microgravity, Jedediah Morse Storey Dec 2023

Experiments And Simulations Of Liquid Mass Gauging And Slosh Dynamics In Microgravity, Jedediah Morse Storey

Theses and Dissertations

Advancements in liquid propellant management science and technologies are key to increasing safety, decreasing cost, and increasing payload mass of space missions. Propellant usually comprises a large portion of the total mass of launch vehicles and spacecraft, so liquid propellant sensing, as well as predicting and controlling the motion of it, are important. Electrical Capacitance Tomography (ECT) is an emerging sensing technology that is capable of measuring the distribution of liquid anywhere inside of a tank, potentially making it useful for measuring slosh and gauging mass. An ECT-instrumented tank was successfully tested in microgravity for the first time. Basics of …


Analysis Of An Electrospray Thruster With A Concave Propellant Meniscus, Adam Nicholas Huller Dec 2023

Analysis Of An Electrospray Thruster With A Concave Propellant Meniscus, Adam Nicholas Huller

Masters Theses

The low thrust, high specific impulse, and low mass of electrospray thrusters (ETs) make them ideal for maneuvering nanosatellites, especially with the new requirement to deorbit a satellite within five years of completing its mission. These innovative thrusters use electrohydrodynamic principles of electrospray (ES) to provide thrust. These principles have been subject to much research over the past decade, though much more research is needed to fully understand the underlying physics of these thrusters. The first part of this study establishes a procedure for analyzing the theoretical thrust performance of an ET, by using propellant properties and well-documented ES scaling …


In-Situ Optical Measurements Of High Temperature Combustion Plumes, Cara Frischkorn Dec 2023

In-Situ Optical Measurements Of High Temperature Combustion Plumes, Cara Frischkorn

All Graduate Theses and Dissertations, Fall 2023 to Present

Rocket motors are critical to the human exploration of space and to the United States missile defense systems. The design and manufacturing of these motors requires extensive simulation and testing to assure the motors will perform as intended and to minimize safety risks. Taking data from inside the rocket motors during tests is extremely difficult due to the intense temperatures inside the motor as it burns; most instrumentation cannot survive in this environment. The research discussed in this thesis aims to develop an instrumentation system composed of a fiberoptic cable which conducts light from the interior of a rocket motor …


Development Of A Potassium Permanganate Catalyst-Infused Fuel Grain For Hydrogen Peroxide Hybrid Thruster Ignition Enhancement, Ryan J. Thibaudeau Dec 2023

Development Of A Potassium Permanganate Catalyst-Infused Fuel Grain For Hydrogen Peroxide Hybrid Thruster Ignition Enhancement, Ryan J. Thibaudeau

All Graduate Theses and Dissertations, Fall 2023 to Present

This thesis describes and addresses the need for reliable ignition in small satellite hybrid propulsion systems using hydrogen peroxide. It describes process of creating custom 3D printed ABS plastic fuel grains with small amounts of catalysts. These catalysts lead to a more reliable and energy-efficient ignition of a hybrid rocked propulsion system using catalyst-infused ABS and high-test hydrogen peroxide (HTP). Hydrogen peroxide is a high-density oxidizer and therefore more volumetrically efficient for a small satellite using hybrid rocket technology when compared to gaseous oxygen (GOX). The traditional ignition methods of hybrid rocket propulsion systems using HTP are compared to and …


Stability And Control Flight Testing Of A Modified Cessna 172, Tatiana Dirrigl Forbes Dec 2023

Stability And Control Flight Testing Of A Modified Cessna 172, Tatiana Dirrigl Forbes

Theses and Dissertations

The Cessna 172N is a small, fixed-wing, single-engine aircraft. The modified Cessna 172N included a swapped engine to a Lycoming O-360-A4M, tuned exhaust, and variable timing ignition installed. Test flights on this aircraft were performed order to evaluate the stability and control characteristics of the Cessna 172N, and compare them with the regulations in the Title 14 CFR Part 23 Airworthiness Standards for Normal, Utility, Acrobatic, and Commuter Category Airplanes. The flight test consisted of four separate tests performed during a single flight, departing from and returning to Melbourne Orlando International airport (KMLB). The data was collected through static and …


Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad Dec 2023

Accelerating Machine Learning Inference For Satellite Component Feature Extraction Using Fpgas., Andrew Ekblad

Theses and Dissertations

Running computer vision algorithms requires complex devices with lots of computing power, these types of devices are not well suited for space deployment. The harsh radiation environment and limited power budgets have hindered the ability of running advanced computer vision algorithms in space. This problem makes running an on-orbit servicing detection algorithm very difficult. This work proposes using a low powered FPGA to accelerate the computer vision algorithms that enable satellite component feature extraction. This work uses AMD/Xilinx’s Zynq SoC and DPU IP to run model inference. Experiments in this work centered around improving model post processing by creating implementations …


Task Optimization Utilizing Digital Transformation Concepts - Automation Project Execution Via Agile Methodology, Anthony Steven Maiello Dec 2023

Task Optimization Utilizing Digital Transformation Concepts - Automation Project Execution Via Agile Methodology, Anthony Steven Maiello

Theses and Dissertations

Task Optimization via the use of automated process improvements is becoming more widespread as more industries lean into the concepts surrounding digital transformation. This shift also necessitates a complementary adaptation in project management methodologies to support the rapid and ever-changing environment, requirements, and innovations. This thesis examines the effectiveness of Agile methodology in managing digital automation projects, with a specific focus placed on process improvements with systems engineering. It accomplished this by contrasting the original model, designed and derived utilizing traditional project management techniques, with the proposed model which is a direct result of the application of Agile project practices. …


Gpu Based Monte Carlo Estimation Of Eddy Current Losses In Electromagnetic Coil-Core System, Adwaith Ravichandran Dec 2023

Gpu Based Monte Carlo Estimation Of Eddy Current Losses In Electromagnetic Coil-Core System, Adwaith Ravichandran

Theses and Dissertations

A novel parallelizable probabilistic approach to model eddy currents in AC electromagnets is presented in this research. Consequently, power loss associated with the formation of these eddy currents is estimated and validated using experimental data. Furthermore, predicting the effect of ferromagnetic alternating field enhancement on power loss in the source excitation winding has been an active area of research. Unlike a stationary field, an alternating sinusoidal field diffuses partially into the ferromagnetic material leading to a predictably sub-optimal field enhancement. To model these physics, finite element techniques employ nonlinear iterative solvers which are time consuming. A novel method is developed …


A New Algorithm For Encounter Generation: Encounters From Actual Trajectories (Enact), James Anthony Ritchie Iii Nov 2023

A New Algorithm For Encounter Generation: Encounters From Actual Trajectories (Enact), James Anthony Ritchie Iii

Theses and Dissertations

There is ongoing research at the Federal Aviation Administration (FAA) and other private industries to examine a concept for delegated separation in multiple classes of airspace to allow unmanned aircraft systems (UAS) to remain well clear of other aircraft. Detect and Avoid (DAA) capabilities are one potential technology being examined to maintain separation. To evaluate these DAA capabilities, input traffic scenarios are needed, but current approaches are limited by the breadth of the traffic recordings available. This thesis derives a new mathematical algorithm that uses great circle navigation equations in an Earth spherical model and an accurate aircraft performance model …


Experimental Investigation Of The Vortex-Induced Vibration Response Of A Flexibly-Mounted Rigid Cylinder In The Shear-Thinning And Inertial-Viscoelastic Flow Regimes, Pieter Boersma Nov 2023

Experimental Investigation Of The Vortex-Induced Vibration Response Of A Flexibly-Mounted Rigid Cylinder In The Shear-Thinning And Inertial-Viscoelastic Flow Regimes, Pieter Boersma

Doctoral Dissertations

Flexible or flexibly-mounted structures with bluff cross-sections in flow can shed vortices at frequencies that increase with increasing flow velocity. When this shedding frequency is equal to the structure's natural frequency, the structure can oscillate. This is called vortex-induced vibrations (VIV). VIV is present in multiple fluid-structure interaction (FSI) systems which can be found in industrial, medical, and engineering applications. These oscillations can be desirable or undesirable, so understanding the physics behind this phenomenon is important. This work seeks to investigate experimentally the VIV response in the inertial-viscoelastic regime where fluid inertia and elasticity influence the system. The subcritical Newtonian …


Design And Fem Modelling Of Mems Capacitive Accelerometer And Gyroscope For Quadcopter/Uav Applications, Shaikha Rashid Alnaqbi Nov 2023

Design And Fem Modelling Of Mems Capacitive Accelerometer And Gyroscope For Quadcopter/Uav Applications, Shaikha Rashid Alnaqbi

Theses

This study presents the design, simulation, and analysis of Micro Electromechanical Systems (MEMS) sensors, constituting the principal components of MEMS-based Inertial Measurement Units (IMUs). The main objective of the study is to design, simulate and analyze 3-axis capacitive accelerometer and 3-axis gyroscope. The MEMS-based capacitive accelerometers and gyroscope are analyzed using Ansys Workbench. Modal, Static Structural and harmonic analysis are used to obtain resonant frequencies, deformation/stress and profile of amplitude over a wide range of frequencies. Mechanical sensitivity analysis of the designed accelerometer and gyroscope is performed using the Finite Element Method (FEM). Analytical Equations are developed to calculate mechanical …