Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Fast Decision-Making Under Time And Resource Constraints, Kyle Gabriel Lassak Jan 2020

Fast Decision-Making Under Time And Resource Constraints, Kyle Gabriel Lassak

Graduate Theses, Dissertations, and Problem Reports

Practical decision makers are inherently limited by computational and memory resources as well as the time available in which to make decisions. To cope with these limitations, humans actively seek methods which limit their resource demands by exploiting structure within the environment and exploiting a coupling between their sensing and actuation to form heuristics for fast decision-making. To date, such behavior has not been replicated in artificial agents. This research explores how heuristics may be incorporated into the decision-making process to quickly make high-quality decisions through the analysis of a prominent case study: the outfielder problem. In the outfielder problem, …


Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves Jan 2020

Synthesis Of Graphene Using Plasma Etching And Atmospheric Pressure Annealing: Process And Sensor Development, Andrew Robert Graves

Graduate Theses, Dissertations, and Problem Reports

Having been theorized in 1947, it was not until 2004 that graphene was first isolated. In the years since its isolation, graphene has been the subject of intense, world-wide study due to its incredibly diverse array of useful properties. Even though many billions of dollars have been spent on its development, graphene has yet to break out of the laboratory and penetrate mainstream industrial applications markets. This is because graphene faces a ‘grand challenge.’ Simply put, there is currently no method of manufacturing high-quality graphene on the industrial scale. This grand challenge looms particularly large for electronic applications where the …


Improving The Biological Control Of Persicaria Perfoliata (Polygonaceae) Using Rhinoncomimus Latipes Korotyaev (Coleoptera: Curculionidae), Jaewon Kim Jan 2020

Improving The Biological Control Of Persicaria Perfoliata (Polygonaceae) Using Rhinoncomimus Latipes Korotyaev (Coleoptera: Curculionidae), Jaewon Kim

Graduate Theses, Dissertations, and Problem Reports

Persicaria perfoliata (L.) H. Gross (Polygonaceae; Mile-a-minute weed) is a rapid-growing invasive vine introduced from eastern Asia to northeastern United States in the 1930s. This vine has been invaded in disturbed areas and reforestation sites in 15 states in the U.S. and forms dense, monocultural patches that may inhibit natural forest regeneration. To control this weed, a host-specific biocontrol agent, Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) has been released in the P. perfoliata invaded states in the U.S. during the past 15 years. Currently, R. latipes is released by hand to the invaded area where the presence of the weed is …


Exploration Of Unknown Environments Using A Tethered Mobile Robot, Danylo Shapovalov Jan 2020

Exploration Of Unknown Environments Using A Tethered Mobile Robot, Danylo Shapovalov

Graduate Theses, Dissertations, and Problem Reports

Exploration with mobile robots is a well known field of research, but current solutions cannot be directly applied for tethered robots. In some applications, tethers may be very important to provide power or allow communication with the robot. This thesis presents an exploration algorithm that guarantees complete exploration of arbitrary environments within the length constraint of the tether, while keeping the tether tangle-free at all times. While a generalized algorithm that can be used with several exploration strategies is also proposed, the presented implementation uses a modified frontier-based exploration approach, where the robot chooses its next goal in the frontier …


Terrain Aware Traverse Planning For Mars Rovers, Gabrielle Hedrick Jan 2020

Terrain Aware Traverse Planning For Mars Rovers, Gabrielle Hedrick

Graduate Theses, Dissertations, and Problem Reports

NASA is proposing a Mars Sample Return mission, to be completed within one Martian year, that will require enhanced autonomy to perform its duties faster, safer, and more efficiently. With its main purpose being to retrieve samples possibly tens of kilometers away, it will need to drive beyond line-of-sight to get to its target more quickly than any rovers before. This research proposes a new methodology to support a sample return mission and is divided into three compo-nents: map preparation (map of traversability, i.e., ability of a terrain to sustain the traversal of a vehicle), path planning (pre-planning and replanning), …


Low-Cost Skewed Redundant Imu Configuration For State-Space Recovery In A Saturated Environment, Levi S. Hubbard Jan 2020

Low-Cost Skewed Redundant Imu Configuration For State-Space Recovery In A Saturated Environment, Levi S. Hubbard

Graduate Theses, Dissertations, and Problem Reports

Low-cost sensors for state space determination can be used successfully for ground vehicles, robots, unmanned aerial vehicles, and Internet-of-Things applications. When a high fidelity Inertial Measurement Unit (IMU) cannot be obtained for state space determination, low-cost sensors can be used to satisfactory standards, despite their limitations in capabilities, by using various implementation techniques. The research group was experimentally investigating state space information of an unstable flying vehicle for motion simulation validation. The high fidelity motion capture system would intermittently lose track of the flight vehicle which lost critical flight data.

The goal was to determine the potential of low-cost off-the-shelf …


Characterizing Premixed Syngas Combustion In Micro-Channels, Sunita Pokharel Jan 2020

Characterizing Premixed Syngas Combustion In Micro-Channels, Sunita Pokharel

Graduate Theses, Dissertations, and Problem Reports

Increasing demands in the next-generation portable power-generation devices such as unmanned aerial vehicles (UAV), microsatellite thrusters, micro-chemical reactors and sensors calls for fuels with high specific energy and low emissions to meet the current demand of green energy. Fuel-lean synthesis gas (syngas) meets both these requirements exhibiting a promising route to a clean and green environment. Thus, it is of critical importance to characterize syngas combustion and understand its properties in the micro-combustion industry. In addition to complicated flame dynamics in microscale systems, varying the syngas-fuel mixture composition as well as the boundary conditions and geometry of a combustor significantly …


Aeroelasticity Of Composite Plate Wings Using Hsdt And Higher-Order Fem, Justin A. Haught Jan 2020

Aeroelasticity Of Composite Plate Wings Using Hsdt And Higher-Order Fem, Justin A. Haught

Graduate Theses, Dissertations, and Problem Reports

The aeroelasticity of composite wings is becoming an increasingly researched topic in aircraft design, as designers continue to replace aluminum alloy components with those made of composite materials because of their favorable strength-to-weight ratio, fatigue characteristics, and corrosion resistance. Additionally, the bending-torsion coupling exhibited by composite laminates readily allow for the aeroelastic optimization of an aerodynamic structure through the process of aeroelastic tailoring. Wings made of composites materials, however, are more vulnerable to shear deformation.

The objective of the present research is to study the divergence and flutter characteristics of composite plate wings using a higher-order shear deformation theory (HSDT) …