Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Remote sensing

Civil and Environmental Engineering

Biological Systems Engineering: Papers and Publications

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Modeling Actual Evapotranspiration With Msi-Sentinel Images And Machine Learning Algorithms, Robson Argolo Dos Santos, Everardo Chartuni Mantovani, Elpídio Inácio Fernandes-Filho, Roberto Filgueiras, Rodrigo Dal Sasso Lourenço, Vinícius Bof Bufon, Christopher M. U. Neale Sep 2022

Modeling Actual Evapotranspiration With Msi-Sentinel Images And Machine Learning Algorithms, Robson Argolo Dos Santos, Everardo Chartuni Mantovani, Elpídio Inácio Fernandes-Filho, Roberto Filgueiras, Rodrigo Dal Sasso Lourenço, Vinícius Bof Bufon, Christopher M. U. Neale

Biological Systems Engineering: Papers and Publications

The modernization of computational resources and application of artificial intelligence algorithms have led to advancements in studies regarding the evapotranspiration of crops by remote sensing. Therefore, this research proposed the application of machine learning algorithms to estimate the ETrF (Evapotranspiration Fraction) of sugar can crop using the METRIC (Mapping Evapotranspiration at High Resolution with Internalized Calibration) model with data from the Sentinel-2 satellites constellation. In order to achieve this goal, images from the MSI sensor (MultiSpectral Instrument) from the Sentinel-2 and the OLI (Operational Land Imager) and TIRS (Thermal Infrared Sensor) sensors from the Landsat-8 were acquired nearly …


Site-Specific Irrigation Management In A Sub-Humid Climate Using A Spatial Evapotranspiration Model With Satellite And Airborne Imagery, Sandeep Bhatti, Derek M. Heeren, J. Burdette Barker, Christopher M. U. Neale, Wayne Woldt, Mitchell S. Maguire, Daran Rudnick Jan 2020

Site-Specific Irrigation Management In A Sub-Humid Climate Using A Spatial Evapotranspiration Model With Satellite And Airborne Imagery, Sandeep Bhatti, Derek M. Heeren, J. Burdette Barker, Christopher M. U. Neale, Wayne Woldt, Mitchell S. Maguire, Daran Rudnick

Biological Systems Engineering: Papers and Publications

Variable Rate Irrigation (VRI) considers spatial variability in soil and plant characteristics to optimize irrigation management in agricultural fields. The advent of unmanned aircraft systems (UAS) creates an opportunity to utilize high-resolution (spatial and temporal) imagery into irrigation management due to decreasing costs, ease of operation, and reduction of regulatory constraints. This research aimed to evaluate the use of UAS data for VRI, and to quantify the potential of VRI in terms of relative crop and water response. Irrigation treatments were: (1) VRI using Landsat imagery (VRI-L), (2) VRI using UAS imagery (VRI-U), (3) uniform (U), and (4) rainfed (R). …


Calibration Of A Common Shortwave Multispectral Camera System For Quantitative Agricultural Applications, J. Burdette Barker, Wayne Woldt, Brian Wardlow, Christopher Michael Usher Neale, Mitchell S. Maguire, Bryan Leavitt, Derek M. Heeren Jan 2020

Calibration Of A Common Shortwave Multispectral Camera System For Quantitative Agricultural Applications, J. Burdette Barker, Wayne Woldt, Brian Wardlow, Christopher Michael Usher Neale, Mitchell S. Maguire, Bryan Leavitt, Derek M. Heeren

Biological Systems Engineering: Papers and Publications

Unmanned aerial systems (UAS) for collecting multispectral imagery of agricultural fields are becoming more affordable and accessible. However, there is need to validate calibration of sensors on these systems when using them for quantitative analyses such as evapotranspiration, and other modeling for agricultural applications. The results of laboratory testing of a MicaSense (Seattle, WA, USA) RedEdge™ 3 multispectral camera and MicaSense Downwelling Light Sensor (irradiance sensor) system using a calibrated integrating sphere were presented. Responses of the camera and irradiance sensor were linear over many light levels and became non-linear at light levels below expected real-world, field conditions. Simple linear …


Variable Rate Irrigation Of Maize And Soybean In West-Central Nebraska Under Full And Deficit Irrigation, J Burdette Barker, Sandeep Bhatti, Derek M. Heeren, Christopher M.U. Neale, Daran Rudnick Sep 2019

Variable Rate Irrigation Of Maize And Soybean In West-Central Nebraska Under Full And Deficit Irrigation, J Burdette Barker, Sandeep Bhatti, Derek M. Heeren, Christopher M.U. Neale, Daran Rudnick

Biological Systems Engineering: Papers and Publications

Variable rate irrigation (VRI) may improve center pivot irrigation management, including deficit irrigation. A remote-sensing-based evapotranspiration model was implemented with Landsat imagery to manage irrigations for a VRI equipped center pivot irrigated field located in West-Central Nebraska planted to maize in 2017 and soybean in 2018. In 2017, the study included VRI using the model, and uniform irrigation using neutron attenuation for full irrigation with no intended water stress (VRI-Full and Uniform-Full treatments, respectively). In 2018, two deficit irrigation treatments were added (VRI-Deficit and Uniform-Deficit, respectively) and the model was modified in an attempt to reduce water balance drift; model …


Fuzzy Control System For Variable Rate Irrigation Using Remote Sensing, Willians Ribeiro Mendes, Fábio Meneghetti U. Araújo, Ritaban Dutta, Derek M. Heeren Jan 2019

Fuzzy Control System For Variable Rate Irrigation Using Remote Sensing, Willians Ribeiro Mendes, Fábio Meneghetti U. Araújo, Ritaban Dutta, Derek M. Heeren

Biological Systems Engineering: Papers and Publications

Variable rate irrigation (VRI) is the capacity to spatially vary the depth of water application in a field to handle different types of soils, crops, and other conditions. Precise management zones must be developed to efficiently apply variable rate technologies. However, there is no universal method to determine management zones. Using speed control maps for the central pivot is one option. Thus, this study aims to develop an intelligent fuzzy inference system based on precision irrigation knowledge, i.e., a system that can create prescriptive maps to control the rotation speed of the central pivot. Satellite images are used in this …


Rapeseed Seedling Stand Counting And Seeding Performance Evaluation At Two Early Growth Stages Based On Unmanned Aerial Vehicle Imagery, Biquan Zhao, Jian Zhang, Chenghai Yang, Guangsheng Zhou, Youchun Ding, Yeyin Shi, Dongyan Zhang, Jing Xie, Qingxi Liao Jan 2019

Rapeseed Seedling Stand Counting And Seeding Performance Evaluation At Two Early Growth Stages Based On Unmanned Aerial Vehicle Imagery, Biquan Zhao, Jian Zhang, Chenghai Yang, Guangsheng Zhou, Youchun Ding, Yeyin Shi, Dongyan Zhang, Jing Xie, Qingxi Liao

Biological Systems Engineering: Papers and Publications

The development of unmanned aerial vehicles (UAVs) and image processing algorithms for field-based phenotyping offers a non-invasive and effective technology to obtain plant growth traits such as canopy cover and plant height in fields. Crop seedling stand count in early growth stages is important not only for determining plant emergence, but also for planning other related agronomic practices. The main objective of this research was to develop practical and rapid remote sensing methods for early growth stage stand counting to evaluate mechanically seeded rapeseed (Brassica napus L.) seedlings. Rapeseed was seeded in a field by three different seeding devices. A …


Rapeseed Seedling Stand Counting And Seeding Performance Evaluation At Two Early Growth Stages Based On Unmanned Aerial Vehicle Imagery, Biquan Zhao, Jian Zhang, Chenghai Yang, Guangsheng Zhou, Youchun Ding, Yeyin Shi, Dongyan Zhang, Jing Xie, Qingxi Liao Jan 2018

Rapeseed Seedling Stand Counting And Seeding Performance Evaluation At Two Early Growth Stages Based On Unmanned Aerial Vehicle Imagery, Biquan Zhao, Jian Zhang, Chenghai Yang, Guangsheng Zhou, Youchun Ding, Yeyin Shi, Dongyan Zhang, Jing Xie, Qingxi Liao

Biological Systems Engineering: Papers and Publications

The development of unmanned aerial vehicles (UAVs) and image processing algorithms for field-based phenotyping offers a non-invasive and effective technology to obtain plant growth traits such as canopy cover and plant height in fields. Crop seedling stand count in early growth stages is important not only for determining plant emergence, but also for planning other related agronomic practices. The main objective of this research was to develop practical and rapid remote sensing methods for early growth stage stand counting to evaluate mechanically seeded rapeseed (Brassica napus L.) seedlings. Rapeseed was seeded in a field by three different seeding devices. A …


Evaluation Of Variable Rate Irrigation Using A Remote-Sensing-Based Model, John Burdette Barker, Derek M. Heeren, Christopher M.U. Neale, Daran Rudnick Jan 2018

Evaluation Of Variable Rate Irrigation Using A Remote-Sensing-Based Model, John Burdette Barker, Derek M. Heeren, Christopher M.U. Neale, Daran Rudnick

Biological Systems Engineering: Papers and Publications

Improvements in soil water balance modeling can be beneficial for optimizing irrigation management to account for spatial variability in soil properties and evapotranspiration (ET). A remote-sensing-based ET and water balance model was tested for irrigation management in an experiment at two University of Nebraska-Lincoln research sites located near Mead and Brule, Nebraska. Both fields included a center pivot equipped with variable rate irrigation (VRI). The study included maize in 2015 and 2016 and soybean in 2016 at Mead, and maize in 2016 at Brule, for a total of 210 plot-years. Four irrigation treatments were applied at Mead, including: VRI based …


Ecosystem Evapotranspiration: Challenges In Measurements, Estimates, And Modeling, D.M. Amatya, Suat Irmak, P. Gowda, G. Sun, J.E. Nettles, K.R. Douglas-Mankin Feb 2016

Ecosystem Evapotranspiration: Challenges In Measurements, Estimates, And Modeling, D.M. Amatya, Suat Irmak, P. Gowda, G. Sun, J.E. Nettles, K.R. Douglas-Mankin

Biological Systems Engineering: Papers and Publications

Evapotranspiration (ET) processes at the leaf to landscape scales in multiple land uses have important controls and feed backs for local, regional, and global climate and water resource systems. Innovative methods, tools, and technologies for improved understanding and quantification of ET and crop water use are critical for adapting more effective management strategies to cope with increasing demand for freshwater resources under global climate change. This article introduces an ASABE Special Collection of 12 articles on ET monitoring and modeling research for multiple land uses and scales. The collection focuses on recent advances in four critical topical areas: (1) reference …


Ecosystem Evapotranspiration: Challenges In Measurements, Estimates, And Modeling, D.M. Amatya, Sibel Irmak, P. Gowda, G. Sun, J.E. Nettles, K.R. Douglas-Mankin Jan 2016

Ecosystem Evapotranspiration: Challenges In Measurements, Estimates, And Modeling, D.M. Amatya, Sibel Irmak, P. Gowda, G. Sun, J.E. Nettles, K.R. Douglas-Mankin

Biological Systems Engineering: Papers and Publications

Evapotranspiration (ET) processes at the leaf to landscape scales in multiple land uses have important con- trols and feedbacks for local, regional, and global climate and water resource systems. Innovative methods, tools, and technologies for improved understanding and quantification of ET and crop water use are critical for adapting more effective management strategies to cope with increasing demand for freshwater resources under global climate change. This article introduces an ASABE Special Collection of 12 articles on ET monitoring and modeling research for multiple land uses and scales. The collection focuses on recent advances in four critical topical areas: (1) reference …


Evaluation Of A Hybrid Remote Sensing Evapotranspiration Model For Variable Rate Irrigation Management, J. Burdette Barker, Christopher M. U. Neale, Derek M. Heeren Nov 2015

Evaluation Of A Hybrid Remote Sensing Evapotranspiration Model For Variable Rate Irrigation Management, J. Burdette Barker, Christopher M. U. Neale, Derek M. Heeren

Biological Systems Engineering: Papers and Publications

Accurate generation of spatial irrigation prescriptions is essential for implementation and evaluation of variable rate irrigation (VRI) technology. A hybrid remote sensing evapotranspiration (ET) model was evaluated for use in developing irrigation prescriptions for a VRI center pivot. The model is a combination of a two-source energy balance model and a reflectance based crop coefficient water balance model. Spatial ET and soil water depletion were modeled for a 10 km2 area consisting of rainfed and irrigated maize fields in eastern Nebraska for 2013. Multispectral images from Landsat 8 Operational Land Imager and Thermal Infrared Sensor were used as model …