Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Photocatalysis

Discipline
Institution
Publication Year
Publication

Articles 1 - 22 of 22

Full-Text Articles in Engineering

Catalytical Performance Of Heteroatom Doped And Undoped Carbon-Based Materials, Jahangir Alom, Md Saif Hasan, Md Asaduzaman, Mohammad Taufiq Alam, Dalel Belhaj, Raja Selvaraj, Md Ashraf Hossain, Masoumeh Zargar, Mohammad Boshir Ahmed May 2023

Catalytical Performance Of Heteroatom Doped And Undoped Carbon-Based Materials, Jahangir Alom, Md Saif Hasan, Md Asaduzaman, Mohammad Taufiq Alam, Dalel Belhaj, Raja Selvaraj, Md Ashraf Hossain, Masoumeh Zargar, Mohammad Boshir Ahmed

Research outputs 2022 to 2026

Developing cost-effective, eco-friendly, efficient, stable, and unique catalytic systems remains a crucial issue in catalysis. Due to their superior physicochemical and electrochemical properties, exceptional structural characteristics, environmental friendliness, economic productivity, minimal energy demand, and abundant supply, a significant amount of research has been devoted to the development of various doped carbon materials as efficient catalysts. In addition, carbon-based materials (CBMs) with specified doping have lately become significant members of the carbon group, showing promise for a broad range of uses (e.g., catalysis, environmental remediation, critical chemical production, and energy conversion and storage). This study will, therefore, pay attention to the …


Photocatalytic Reforming Of Lignocellulose: A Review, Xinyuan Xu, Lei Shi, Shu Zhang, Zhimin Ao, Jinqiang Zhang, Shaobin Wang, Hongqi Sun Jan 2023

Photocatalytic Reforming Of Lignocellulose: A Review, Xinyuan Xu, Lei Shi, Shu Zhang, Zhimin Ao, Jinqiang Zhang, Shaobin Wang, Hongqi Sun

Research outputs 2022 to 2026

Biomass has been considered as a promising energy resource to combat the exhaustion of fossil fuels, as it is renewable, sustainable, and clean. Photocatalytic reforming is a novel technology to utilize solar energy for upgrading biomass in relatively mild conditions. This process efficiently reforms and recasts biomass into hydrogen and/or valuable chemicals. To date, lignocellulose, including cellulose, hemicellulose and lignin, has attracted extensive studies in facile photocatalytic valorisation. This review summarizes and analyzes the most recent research advances on photoreforming of lignocellulose to provide insights for future research, with a particular emphasis on the reformation of lignin because of its …


Influence Of Salts On The Photocatalytic Degradation Of Formic Acid In Wastewater, Azzah Nazihah Che Abdul Rahim, Shotaro Yamada, Haruki Bonkohara, Tsuyoshi Imai, Yung-Tse Hung, Izumi Kumakiri Nov 2022

Influence Of Salts On The Photocatalytic Degradation Of Formic Acid In Wastewater, Azzah Nazihah Che Abdul Rahim, Shotaro Yamada, Haruki Bonkohara, Tsuyoshi Imai, Yung-Tse Hung, Izumi Kumakiri

Civil and Environmental Engineering Faculty Publications

Conventional wastewater treatment technologies have difficulties in feasibly removing persistent organics. The photocatalytic oxidation of these contaminants offers an economical and environmentally friendly solution. In this study, TiO2 membranes and Ag/TiO2 membranes were prepared and used for the decomposition of dissolved formic acid in wastewater. The photochemical deposition of silver on a TiO2 membrane improved the decomposition rate. The rate doubled by depositing ca. 2.5 mg of Ag per 1 g of TiO2. The influence of salinity on formic acid decomposition was studied. The presence of inorganic salts reduced the treatment performance of the TiO2 membranes to half. Ag/TiO2 membranes …


Recent Progress In Two Dimensional Mxenes For Photocatalysis: A Critical Review, Tahir Haneef, Kashif Rasool, Jibran Iqbal, Rab Nawaz, Muhammad Raza Ul Mustafa, Khaled A Mahmoud, Tapati Sarkar, Asif Shahzad Nov 2022

Recent Progress In Two Dimensional Mxenes For Photocatalysis: A Critical Review, Tahir Haneef, Kashif Rasool, Jibran Iqbal, Rab Nawaz, Muhammad Raza Ul Mustafa, Khaled A Mahmoud, Tapati Sarkar, Asif Shahzad

All Works

Transition metal carbides and nitrides, generally known as MXenes have emerged as an alternative to improve photocatalytic performance in renewable energy and environmental remediation applications because of their high surface area, tunable chemistry, and easily adjustable elemental compositions. MXenes have many interlayer groups, surface group operations, and a flexible layer spacing that makes them ideal catalysts. Over 30 different members of the MXenes family have been explored and successfully utilized as catalysts. Particularly, MXenes have achieved success as a photocatalyst for carbon dioxide reduction, nitrogen fixation, hydrogen evolution, and photochemical degradation. The structure of MXenes and the presence of hydrophilic …


Functional Carbon Nitride Materials In Photo-Fenton-Like Catalysis For Environmental Remediation, Jingkai Lin, Wenjie Tian, Zheyu Guan, Huayang Zhang, Xiaoguang Duan, Hao Wang, Hongqi Sun, Yanfen Fang, Yingping Huang, Shaobin Wang Jun 2022

Functional Carbon Nitride Materials In Photo-Fenton-Like Catalysis For Environmental Remediation, Jingkai Lin, Wenjie Tian, Zheyu Guan, Huayang Zhang, Xiaoguang Duan, Hao Wang, Hongqi Sun, Yanfen Fang, Yingping Huang, Shaobin Wang

Research outputs 2022 to 2026

Among various advanced oxidation processes, coupled photocatalysis and heterogeneous Fenton-like catalysis (known as photo-Fenton-like catalysis) to generate highly reactive species for environmental remediation has attracted wide interests. As an emerging metal-free photocatalyst, graphitic carbon nitride (g-C3N4, CN) has been recently recognized as a promising candidate to catalyze robustly heterogeneous photo-Fenton-like reactions for wastewater remediation. This review summarizes recent progress in fabricating various types of CN-based catalysts for the photo-Fenton-like reaction process. Innovative engineering strategies on the CN matrix are outlined, ranging from morphology control, defect engineering, nonmetal atom doping, organic molecule doping to modification by metal-containing species. The photo-Fenton-like catalytic …


Designing A Reactor Chamber For Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn Merrill, Bingjie Zhang, Jerry Larue Aug 2020

Designing A Reactor Chamber For Hot Electron Chemistry On Bimetallic Plasmonic Nanoparticles, Bryn Merrill, Bingjie Zhang, Jerry Larue

SURF Posters and Papers

Catalysis provides pathways for efficient and selective chemical reactions by lowering the energy barriers for desired products. Gold nanoparticles (AuNPs) show excellent promise as plasmonic catalysts. Plasmonic materials have localized surface plasmon resonances, oscillations of the electron bath at the surface of a nanoparticle, that generate energetically intense electric fields which rapidly decay into energetically excited electrons. The excited electrons have the potential to destabilize atoms strongly bound to the catalysts through occupation of antibonding orbitals. Tuning the antibonding orbitals to make them accessible for occupancy by electrons is achieved by coating the AuNP in a thin layer of another …


Nitrogen-Doped Carbon Nanospheres-Modified Graphitic Carbon Nitride With Outstanding Photocatalytic Activity, Qiaoran Liu, Hao Tian, Zhenghua Dai, Hongqi Sun, Jian Liu, Zhimin Ao, Shaobin Wang, Chen Han, Shaomin Liu Jan 2020

Nitrogen-Doped Carbon Nanospheres-Modified Graphitic Carbon Nitride With Outstanding Photocatalytic Activity, Qiaoran Liu, Hao Tian, Zhenghua Dai, Hongqi Sun, Jian Liu, Zhimin Ao, Shaobin Wang, Chen Han, Shaomin Liu

Research outputs 2014 to 2021

Metals and metal oxides are widely used as photo/electro-catalysts for environmental remediation. However, there are many issues related to these metal-based catalysts for practical applications, such as high cost and detrimental environmental impact due to metal leaching. Carbon-based catalysts have the potential to overcome these limitations. In this study, monodisperse nitrogen-doped carbon nanospheres (NCs) were synthesized and loaded onto graphitic carbon nitride (g-C3N4, GCN) via a facile hydrothermal method for photocatalytic removal of sulfachloropyridazine (SCP). The prepared metal-free GCN-NC exhibited remarkably enhanced efficiency in SCP degradation. The nitrogen content in NC critically influences the physicochemical properties and performances of the …


Rational Catalyst Design For N2 Reduction Under Ambient Conditions: Strategies Towards Enhanced Conversion Efficiency, Lei Shi, Yu Yin, Shaobin Wang, Hongqi Sun Jan 2020

Rational Catalyst Design For N2 Reduction Under Ambient Conditions: Strategies Towards Enhanced Conversion Efficiency, Lei Shi, Yu Yin, Shaobin Wang, Hongqi Sun

Research outputs 2014 to 2021

Ammonia (NH3), one of the basic chemicals in most fertilizers and a promising carbon-free energy storage carrier, is typically synthesized via the Haber–Bosch process with high energy consumption and massive emission of greenhouse gases. The photo/electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions has attracted increasing interests recently, providing alternative routes to realize green NH3 synthesis. Despite rapid advances achieved in this most attractive research field, the unsatisfactory conversion efficiency including a low NH3 yield rate, and limited Faradaic efficiency or apparent quantum efficiency still remains as a great challenge. The NRR performance is intrinsically related …


Pt Nanoparticles Decorated Heterostructured G-C3n4/Bi2moo6 Microplates With Highly Enhanced Photocatalytic Activities Under Visible Light, Z. Jia, F. Lyu, Laichang Zhang, S. Zeng, Shunxing Liang, Y. Y. Li, J. Lu May 2019

Pt Nanoparticles Decorated Heterostructured G-C3n4/Bi2moo6 Microplates With Highly Enhanced Photocatalytic Activities Under Visible Light, Z. Jia, F. Lyu, Laichang Zhang, S. Zeng, Shunxing Liang, Y. Y. Li, J. Lu

Research outputs 2014 to 2021

Exploring an efficient and photostable heterostructured photocatalyst is a pivotal scientific topic for worldwide energy and environmental concerns. Herein, we reported that Pt decorated g-C3N4/Bi2MoO6 heterostructured composites with enhanced photocatalytic performance under visible light were simply synthesized by one-step hydrothermal method for methylene blue (MB) dye degradation. Results revealed that the synthetic Pt decorated g-C3N4/Bi2MoO6 composites with Bi2MoO6 contents of 20 wt.% (Pt@CN/20%BMO) presented the highest photocatalytic activity, exhibiting 7 and 18 times higher reactivity than the pure g-C3N4 and …


Photocatalytic Degradation Of Profenofos And Triazophos Residues In The Chinese Cabbage, Brassica Chinensis, Using Ce-Doped Tio2, Xiangying Liu, You Zhan, Zhongqin Zhang, Lang Pan, Lifeng Hui, Kailin Liu, Xuguo Zhou, Lianyang Bai Mar 2019

Photocatalytic Degradation Of Profenofos And Triazophos Residues In The Chinese Cabbage, Brassica Chinensis, Using Ce-Doped Tio2, Xiangying Liu, You Zhan, Zhongqin Zhang, Lang Pan, Lifeng Hui, Kailin Liu, Xuguo Zhou, Lianyang Bai

Entomology Faculty Publications

Pesticides have revolutionized the modern day of agriculture and substantially reduced crop losses. Synthetic pesticides pose a potential risk to the ecosystem and to the non-target organisms due to their persistency and bioaccumulation in the environment. In recent years, a light-mediated advanced oxidation processes (AOPs) has been adopted to resolve pesticide residue issues in the field. Among the current available semiconductors, titanium dioxide (TiO2) is one of the most promising photocatalysts. In this study, we investigated the photocatalytic degradation of profenofos and triazophos residues in Chinese cabbage, Brassica chinensis, using a Cerium-doped nano semiconductor TiO2 (TiO …


Editorial: Environmental Catalysis And The Corresponding Catalytic Mechanism, Zhimin Ao, Hongqi Sun, Andres Fullana Jan 2019

Editorial: Environmental Catalysis And The Corresponding Catalytic Mechanism, Zhimin Ao, Hongqi Sun, Andres Fullana

Research outputs 2014 to 2021

The ever growing environmental pollution has stimulated the rapid development of environmental catalysis in recent years. Environmental catalysis is a multidisciplinary research field for which more and more chemists, materials scientists, as well as environmentalists have devoted their efforts working in this field because of the bright potentials in improving human health and life quality...


Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman Oct 2018

Photocatalytic Activity: Experimental Features To Report In Heterogeneous Photocatalysis, Md. Ariful Hoque, Marcelo I. Guzman

Chemistry Faculty Publications

Heterogeneous photocatalysis is a prominent area of research with major applications in solar energy conversion, air pollution mitigation, and removal of contaminants from water. A large number of scientific papers related to the photocatalysis field and its environmental applications are published in different journals specializing in materials and nanomaterials. However, many problems exist in the conception of papers by authors unfamiliar with standard characterization methods of photocatalysts as well as with the procedures needed to determine photocatalytic activities based on the determination of “apparent quantum efficiencies” within a wavelength interval or “apparent quantum yields” in the case of using monochromatic …


Significant Improvement In Tio₂ Photocatalytic Activity Through Controllable Zro₂ Deposition, Xiaofeng Wang, Rajankumar L. Patel, Xinhua Liang Jul 2018

Significant Improvement In Tio₂ Photocatalytic Activity Through Controllable Zro₂ Deposition, Xiaofeng Wang, Rajankumar L. Patel, Xinhua Liang

Chemical and Biochemical Engineering Faculty Research & Creative Works

ZrO2 was deposited on anatase TiO2 nanoparticles using 5-80 cycles of atomic layer deposition (ALD). The photocatalytic activity of all samples was evaluated based on the degradation of methylene blue (MB) solution under UV light. The TiO2 sample with 45 cycles of ZrO2 deposition (45c-Zr/TiO2, 1.1 wt% ZrO2) was proved to be the most efficient catalyst with a degradation kinetic constant 10 times larger than that of the pure TiO2 sample. All samples were characterized using inductively coupled plasma atomic emission spectroscopy (ICP-AES), nitrogen adsorption-desorption, X-ray diffraction (XRD), transmission electron microscopy …


Synthesis And Catalytic Applications Of Non-Metal Doped Mesoporous Titania, Syed Z. Islam, Suraj R. Nagpure, Doo Young Kim, Stephen E. Rankin Mar 2017

Synthesis And Catalytic Applications Of Non-Metal Doped Mesoporous Titania, Syed Z. Islam, Suraj R. Nagpure, Doo Young Kim, Stephen E. Rankin

Chemical and Materials Engineering Faculty Publications

Mesoporous titania (mp-TiO2) has drawn tremendous attention for a diverse set of applications due to its high surface area, interfacial structure, and tunable combination of pore size, pore orientation, wall thickness, and pore connectivity. Its pore structure facilitates rapid diffusion of reactants and charge carriers to the photocatalytically active interface of TiO2. However, because the large band gap of TiO2 limits its ability to utilize visible light, non-metal doping has been extensively studied to tune the energy levels of TiO2. While first-principles calculations support the efficacy of this approach, it is challenging to …


Three-Dimensional Bioi/Biox (X = Cl Or Br) Nanohybrids For Enhanced Visible-Light Photocatalytic Activity, Yazi Liu, Jian Xu, Liqiong Wang, Huayang Zhang, Ping Xu, Xiaoguang Duan, Hongqi Sun, Shaobin Wang Mar 2017

Three-Dimensional Bioi/Biox (X = Cl Or Br) Nanohybrids For Enhanced Visible-Light Photocatalytic Activity, Yazi Liu, Jian Xu, Liqiong Wang, Huayang Zhang, Ping Xu, Xiaoguang Duan, Hongqi Sun, Shaobin Wang

Research outputs 2014 to 2021

Three-dimensional flower-like BiOI/BiOX (X = Br or Cl) hybrids were synthesized via a facile one-pot solvothermal approach. With systematic characterizations by X-ray diffraction (XRD), scanning electron microscopy (SEM), Transmission electron microscopy (TEM), the Brunauer-Emmett-Teller (BET)specific surface area, X-ray photoelectron spectroscopy (XPS), and the UV-Vis diffuse reflectance spectra (DRS), the BiOI/BiOCl composites showed a fluffy and porous 3-D architecture with a large specific surface area (SSA) and high capability for light absorption. Among all the BiOX (X = Cl, Br, I) and BiOI/BiOX (X = Cl or Br) composites, BiOI/BiOCl stands out as the most efficient photocatalyst under both visible and …


Nanoscale In Photocatalysis, Zhaohui Wang, Hongqi Sun Jan 2017

Nanoscale In Photocatalysis, Zhaohui Wang, Hongqi Sun

Research outputs 2014 to 2021

Rationally harvesting sunlight to carry out chemical reactions, for example, photochemistry and photocatalysis, has appeared as a beautiful episode within the long history of solar-energy utilization by human beings. Before solar-driven chemical processes approach the scale of solar panel or solar thermal application, considerate efforts are still required from effective collaborations among academia, industries, and governments. Over past few decades, the photocatalysis frontier has been continuously explored by means of interdisciplinary research. Emerging understanding in the nanoscale is most likely to lead photocatalysis into the future.


Mos2 As A Co-Catalyst For Photocatalytic Hydrogen Production From Water, Bing Han, Yun Hang Hu Nov 2016

Mos2 As A Co-Catalyst For Photocatalytic Hydrogen Production From Water, Bing Han, Yun Hang Hu

Michigan Tech Publications

Solar-to-hydrogen conversion based on photocatalytic water splitting is a promising pathway for sustainable hydrogen production. The photocatalytic process requires highly active, inexpensive, and earth-abundant materials as photocatalysts. As a presentative layer-structured transition metal dichalcogenides, molybdenum disulfide (MoS2) is attracting intensive attention due to its unique electro and photo properties. In this article, we comprehensively review the recent research efforts of exploring MoS2 as a co-catalyst for photocatalytic hydrogen production from water, with emphasis on its combination with CdS, CdSe, graphene, carbon nitride, TiO2, and others. It is shown that MoS2–semiconductor composites are promising photocatalysts for hydrogen evolution from water under …


The Impact Of Capsid Proteins On Virus Removal And Inactivation During Water Treatment Processes, Brooke K. Mayer, Yu Yang, Daniel Gerrity, Morteza A. Abbaszadegan Jan 2015

The Impact Of Capsid Proteins On Virus Removal And Inactivation During Water Treatment Processes, Brooke K. Mayer, Yu Yang, Daniel Gerrity, Morteza A. Abbaszadegan

Civil and Environmental Engineering Faculty Research and Publications

This study examined the effect of the amino acid composition of protein capsids on virus inactivation using ultraviolet (UV) irradiation and titanium dioxide photocatalysis, and physical removal via enhanced coagulation using ferric chloride. Although genomic damage is likely more extensive than protein damage for viruses treated using UV, proteins are still substantially degraded. All amino acids demonstrated significant correlations with UV susceptibility. The hydroxyl radicals produced during photocatalysis are considered nonspecific, but they likely cause greater overall damage to virus capsid proteins relative to the genome. Oxidizing chemicals, including hydroxyl radicals, preferentially degrade amino acids over nucleotides, and the amino …


Novel Microwave Assisted Synthesis Of Zns Nanomaterials, Suresh Pillai, Michael Seery, Damian Synnott, John Colreavy, Stephen Hinder Jan 2013

Novel Microwave Assisted Synthesis Of Zns Nanomaterials, Suresh Pillai, Michael Seery, Damian Synnott, John Colreavy, Stephen Hinder

Articles

A novel ambient pressure microwave-assisted technique is developed in which silver and indium modified ZnS is synthesised. The as prepared ZnS is characterised by X-ray diffraction, UV-Vis spectroscopy, X-ray photoelectron spectroscopy and luminescence spectroscopy. This procedure produced crystalline materials with particle sizes below 10 nm. The synthesis technique leads to defects in the crystal which induce mid energy levels in the band gap and lead to indoor light photocatalytic activity. Increasing the amount of silver causes a phase transition from cubic blende to hexagonal phase ZnS. In a comparative study, when the ZnS cubic blende is heated in a conventional …


A Highly Efficient Tio2-Xcx Nano-Heterojunction Photocatalyst For Visible-Light Induced Antibacterial Applications, Vinodkumar Etacheri, Michael Seery, Stephen Hinder, Georg Michlits, Suresh Pillai Jan 2013

A Highly Efficient Tio2-Xcx Nano-Heterojunction Photocatalyst For Visible-Light Induced Antibacterial Applications, Vinodkumar Etacheri, Michael Seery, Stephen Hinder, Georg Michlits, Suresh Pillai

Articles

Visible-light-induced antibacterial activity of carbon-doped anatase-brookite titania nano-heterojunction photocatalysts are reported for the first time. These heterostructures were prepared using a novel low temperature (100 °C) non-hydrothermal low power microwave (300 W) assisted method. Formation of interband C 2p states was found to be responsible for the band gap narrowing of the carbon doped heterojunctions. The most active photocatalyst obtained after 60 minutes of microwave irradiation exhibits a 2-fold higher visible-light induced photocatalytic activity in contrast to the standard commercial photocatalyst Evonik-Degussa P-25. Staphylococcus aureus inactivation rate constant for carbon-doped nano-heterojunctions and the standard photocatalyst was 0.0023 and -0.0081 min …


Tubular Graphitic-C 3 N 4 : A Prospective Material For Energy Storage And Green Photocatalysis, Muhammad Nawaz Tahir, Chuanbao Cao, Faheem K. Butt, Faryal Idrees, Nasir Mahmood, Zulfiqar Ali, Imran Aslam, M Tanveer, Muhammad Rizwan, Tariq Mahmood Jan 2013

Tubular Graphitic-C 3 N 4 : A Prospective Material For Energy Storage And Green Photocatalysis, Muhammad Nawaz Tahir, Chuanbao Cao, Faheem K. Butt, Faryal Idrees, Nasir Mahmood, Zulfiqar Ali, Imran Aslam, M Tanveer, Muhammad Rizwan, Tariq Mahmood

Australian Institute for Innovative Materials - Papers

We have established a facile and scaleable approach to fabricate tubular graphitic-C3N4 using melamine. The construction of the unique tubular morphology is a result of the pre-treatment of melamine with HNO3. Herein, for the first time, we have explored the electrochemical properties of g-C3N4 as an electrode material for supercapacitors. Tubular g-C3N4 has significant advantages due to its distinctive morphology, high surface area (182.61 m2 g-1) and combination of carbon with nitrogen. Therefore, tubular g-C3N4 demonstrated a good specific capacitance of 233 F g-1 at a current density of 0.2 A g-1 in 6 M …


A Comparison Of Pilot-Scale Photocatalysis And Enhanced Coagulation For Disinfection Byproduct Mitigation, Daniel Gerrity, Brooke Mayer, Hodon Ryu, John Crittenden, Morteza Abbaszadegan Apr 2009

A Comparison Of Pilot-Scale Photocatalysis And Enhanced Coagulation For Disinfection Byproduct Mitigation, Daniel Gerrity, Brooke Mayer, Hodon Ryu, John Crittenden, Morteza Abbaszadegan

Civil and Environmental Engineering Faculty Research and Publications

This study evaluated pilot-scale photocatalysis and enhanced coagulation for their ability to remove or destroy disinfection byproduct (DBP) precursors, trihalomethane (THM) formation potential (FP), and THMs in two Arizona surface waters. Limited photocatalysis (/m3) achieved reductions in most of the DBP precursor parameters (e.g., DOC, UV254, and bromide) but led to increased chlorine demand and THMFP. In contrast, enhanced coagulation achieved reductions in the DBP precursors and THMFP. Extended photocatalysis (/m3) decreased THMFP once the energy consumption exceeded 20 kWh/m3. The photocatalytic energy requirements for THM destruction were considerably lower (EEO = …