Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Engineering

Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab Jul 2020

Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab

Chemical Engineering

Water splitting producing hydrogen and oxygen gases appears promising in view of the increasing need of renewable energy sources and storage strategies. Investigation of stable and highly efficient electrocatalysts for oxygen evolution reaction (OER) is targeted in this study at cobalt oxide nanoparticle modified glassy carbon (nano-CoOx/GC) electrodes. The effect of the preparation (Tp) and measuring temperature (Tm) on the electrocatalytic activity of nano-CoOx/GC towards the OER is investigated under various operating conditions. Linear sweep voltammetry (LSV), cyclic voltammetry (CV) as well as SEM and XRD techniques were used to probe the electrocatalytic and morphological characteristics of nano-CoOx prepared under …


Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab Jul 2020

Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab

Chemical Engineering

Water splitting producing hydrogen and oxygen gases appears promising in view of the increasing need of renewable energy sources and storage strategies. Investigation of stable and highly efficient electrocatalysts for oxygen evolution reaction (OER) is targeted in this study at cobalt oxide nanoparticle modified glassy carbon (nano-CoOx/GC) electrodes. The effect of the preparation (Tp) and measuring temperature (Tm) on the electrocatalytic activity of nano-CoOx/GC towards the OER is investigated under various operating conditions. Linear sweep voltammetry (LSV), cyclic voltammetry (CV) as well as SEM and XRD techniques were used to probe the electrocatalytic and morphological characteristics of nano-CoOx prepared under …


A Spin-Coated Tiox/Pt Nanolayered Anodic Catalyst For The Direct Formic Acid Fuel Cells, Islam M. Al-Akraa, Ahmad M. Mohammad Prof Jan 2020

A Spin-Coated Tiox/Pt Nanolayered Anodic Catalyst For The Direct Formic Acid Fuel Cells, Islam M. Al-Akraa, Ahmad M. Mohammad Prof

Chemical Engineering

The CO poisoning of the platinum anodic catalyst which typically functions the catalytic deterioration of the direct formic acid fuel cells could be minimized with a simple modification for Pt with titanium oxide. The fabrication scheme involved the spin-coating of a Ti precursor onto a Pt thin layer that was physically sputtered onto a Si substrate. The whole assembly was subjected to a post-annealing processing to produce the TiOx layer (60 nm) in a porous structure (mostly Anatase) atop of the Pt surface. The porous nature of the TiOx layer permitted the participation of Pt in the electrocatalysis of the …


Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab Jan 2020

Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab

Chemical and Biochemical Engineering Faculty Research & Creative Works

Water splitting producing hydrogen and oxygen gases appears promising in view of the increasing need of renewable energy sources and storage strategies. Investigation of stable and highly efficient electrocatalysts for oxygen evolution reaction (OER) is targeted in this study at cobalt oxide nanoparticle modified glassy carbon (nano-CoOx/GC) electrodes. The effect of the preparation (Tp) and measuring temperature (Tm) on the electrocatalytic activity of nano-CoOx/GC towards the OER is investigated under various operating conditions. Linear sweep voltammetry (LSV), cyclic voltammetry (CV) as well as SEM and XRD techniques were used to probe the electrocatalytic and morphological characteristics of nano-CoOx prepared under …


Rational Catalyst Design For N2 Reduction Under Ambient Conditions: Strategies Towards Enhanced Conversion Efficiency, Lei Shi, Yu Yin, Shaobin Wang, Hongqi Sun Jan 2020

Rational Catalyst Design For N2 Reduction Under Ambient Conditions: Strategies Towards Enhanced Conversion Efficiency, Lei Shi, Yu Yin, Shaobin Wang, Hongqi Sun

Research outputs 2014 to 2021

Ammonia (NH3), one of the basic chemicals in most fertilizers and a promising carbon-free energy storage carrier, is typically synthesized via the Haber–Bosch process with high energy consumption and massive emission of greenhouse gases. The photo/electrocatalytic nitrogen reduction reaction (NRR) under ambient conditions has attracted increasing interests recently, providing alternative routes to realize green NH3 synthesis. Despite rapid advances achieved in this most attractive research field, the unsatisfactory conversion efficiency including a low NH3 yield rate, and limited Faradaic efficiency or apparent quantum efficiency still remains as a great challenge. The NRR performance is intrinsically related …


Enhanced Carbon Dioxide Electrolysis At Redox Manipulated Interfaces, Wenyuan Wang, Lizhen Gan, John P. Lemmon, Fanglin Chen, John T. S. Irvine, Kui Xie Apr 2019

Enhanced Carbon Dioxide Electrolysis At Redox Manipulated Interfaces, Wenyuan Wang, Lizhen Gan, John P. Lemmon, Fanglin Chen, John T. S. Irvine, Kui Xie

Faculty Publications

Utilization of carbon dioxide from industrial waste streams offers significant reductions in global carbon dioxide emissions. Solid oxide electrolysis is a highly efficient, high temperature approach that reduces polarization losses and best utilizes process heat; however, the technology is relatively unrefined for currently carbon dioxide electrolysis. In most electrochemical systems, the interface between active components are usually of great importance in determining the performance and lifetime of any energy materials application. Here we report a generic approach of interface engineering to achieve active interfaces at nanoscale by a synergistic control of materials functions and interface architectures. We show that the …


Electrochemical Conversion Of Methane To Ethylene In A Solid Oxide Electrolyer, Changli Zhu, Shisheng Hou, Xiuli Hu, Jinhai Lu, Fanglin Chen, Kui Xie Mar 2019

Electrochemical Conversion Of Methane To Ethylene In A Solid Oxide Electrolyer, Changli Zhu, Shisheng Hou, Xiuli Hu, Jinhai Lu, Fanglin Chen, Kui Xie

Faculty Publications

Conversion of methane to ethylene with high yield remains a fundamental challenge due to the low ethylene selectivity, severe carbon deposition and instability of catalysts. Here we demonstrate a conceptually different process of in situ electrochemical oxidation of methane to ethylene in a solid oxide electrolyzer under ambient pressure at 850 °C. The porous electrode scaffold with an in situ-grown metal/oxide interface enhances coking resistance and catalyst stability at high temperatures. The highest C2 product selectivity of 81.2% together with the highest C2 product concentration of 16.7% in output gas (12.1% ethylene and 4.6% ethane) is achieved while the methane …


Electronic Structure Engineering Of Licoo2 Toward Enhanced Oxygen Electrocatalysis, Xiaobo Zheng, Yaping Chen, Xusheng Zheng, Guoqiang Zhao, Kun Rui, Peng Li, Xun Xu, Zhenxiang Cheng, Shi Xue Dou, Wenping Sun Jan 2019

Electronic Structure Engineering Of Licoo2 Toward Enhanced Oxygen Electrocatalysis, Xiaobo Zheng, Yaping Chen, Xusheng Zheng, Guoqiang Zhao, Kun Rui, Peng Li, Xun Xu, Zhenxiang Cheng, Shi Xue Dou, Wenping Sun

Australian Institute for Innovative Materials - Papers

Developing low-cost and efficient electrocatalysts for the oxygen evolution reaction and oxygen reduction reaction is of critical significance to the practical application of some emerging energy storage and conversion devices (e.g., metal-air batteries, water electrolyzers, and fuel cells). Lithium cobalt oxide is a promising nonprecious metal-based electrocatalyst for oxygen electrocatalysis; its activity, however, is still far from the requirements of practical applications. Here, a new LiCoO 2 -based electrocatalyst with nanosheet morphology is developed by a combination of Mg doping and shear force-assisted exfoliation strategies toward enhanced oxygen reduction and evolution reaction kinetics. It is demonstrated that the coupling effect …


Programmed Design Of A Lithium–Sulfur Battery Cathode By Integrating Functional Units, Zhipeng Zeng, Wei Li, Qiang Wang, Xingbo Liu Jan 2019

Programmed Design Of A Lithium–Sulfur Battery Cathode By Integrating Functional Units, Zhipeng Zeng, Wei Li, Qiang Wang, Xingbo Liu

Faculty & Staff Scholarship

Sulfur is considered to be one of the most promising cathode materials due to its high theoretical specific capacity and low cost. However, the insulating nature of sulfur and notorious “shuttle effect” of lithium polysulfides (LiPSs) lead to severe loss of active sulfur, poor redox kinetics, and rapid capacity fade. Herein, a hierarchical electrode design is proposed to address these issues synchronously, which integrates multiple building blocks with specialized functions into an ensemble to construct a self‐supported versatile cathode for lithium–sulfur batteries. Nickel foam acts as a robust conductive scaffold. The heteroatom‐doped host carbon with desired lithiophilicity and electronic conductivity …


Catalysts For Nitrogen Reduction To Ammonia, Royce D. Duda, Julie N. Renner Jul 2018

Catalysts For Nitrogen Reduction To Ammonia, Royce D. Duda, Julie N. Renner

Faculty Scholarship

The production of synthetic ammonia remains dependent on the energy- and capital-intensive Haber-Bosch process. Extensive research in molecular catalysis has demonstrated ammonia production from dinitrogen, albeit at low production rates. Mechanistic understanding of dinitrogen reduction to ammonia continues to be delineated through study of molecular catalyst structure, as well as through understanding the naturally occurring nitrogenase enzyme. The transition to Haber-Bosch alternatives through robust, heterogeneous catalyst surfaces remains an unsolved research challenge. Catalysts for electrochemical reduction of dinitrogen to ammonia are a specific focus of research, due to the potential to compete with the Haber-Bosch process and reduce associated carbon …


Fabrication Of Cuox-Pd Nanocatalyst Supported On A Glassy Carbon Electrode For Enhanced Formic Acid Electro-Oxidation, Islam M. Al-Akraa Dr., Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof Jan 2018

Fabrication Of Cuox-Pd Nanocatalyst Supported On A Glassy Carbon Electrode For Enhanced Formic Acid Electro-Oxidation, Islam M. Al-Akraa Dr., Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof

Chemical Engineering

Formic acid (FA) electro-oxidation (FAO) was investigated at a binary catalyst composed of palladium nanoparticles (PdNPs) and copper oxide nanowires (CuOxNWs) and assembled onto a glassy carbon (GC) electrode. /e deposition sequence of PdNPs and CuOxNWs was properly adjusted in such a way that could improve the electrocatalytic activity and stability of the electrode toward FAO. Several techniques including cyclic voltammetry, chronoamperometry, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction were all combined to report the catalyst’s activity and to evaluate its morphology, composition, and structure. /e highest catalytic activity and stability were obtained at the CuOx/Pd/GC …


Platinum Nanoparticles-Cobalt Oxide Nanostructures As Efficient Binary Catalyst For Ethylene Glycol Electro-Oxidation, Ghada El-Nowihy Jan 2017

Platinum Nanoparticles-Cobalt Oxide Nanostructures As Efficient Binary Catalyst For Ethylene Glycol Electro-Oxidation, Ghada El-Nowihy

Chemical Engineering

An enhanced electrocatalytic activity towards ethylene glycol oxidation reaction (EGO) in alkaline medium is observed at a glassy carbon (GC) electrode modified with a nanoparticle-based binary catalyst composed of Pt (nano-Pt) and cobalt oxide (nano-CoOx). The electrocatalytic activity of the modified electrodes towards EGO depends on the loading level as well as the composition of the catalyst layer atop the GC electrode surface. Several techniques including cyclic voltammetry (CV), field-emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS) are used to address the catalytic activity of the proposed catalyst and to reveal their surface morphology and composition, respectively. …


Electrochemical Carbon Dioxide Reduction As An Alternative Source Of Fuels And Chemicals, Kendra Kuhl, Etosha Cave, George Leonard, Daniel Diaz, Nicholas Flanders Apr 2016

Electrochemical Carbon Dioxide Reduction As An Alternative Source Of Fuels And Chemicals, Kendra Kuhl, Etosha Cave, George Leonard, Daniel Diaz, Nicholas Flanders

CO2 Summit II: Technologies and Opportunities

Cost-effective electrochemical CO2 recycling (ECO2R), is the holy grail of green chemistry. ECO2R combines just three inputs: CO2, water, and electricity, and converts them into useful products. At commercial scale, this technology could eliminate our dependence on fossil resources by providing an alternative source of carbon-based compounds for fuels and commodity chemicals. However, commercial fuel and chemical production via ECO2R is challenging, because the current state of the technology is not cost-effective enough to compete with conventionally manufactured fuels and chemicals already on the market.

The key cost-drivers of ECO2R are the energy efficiency, product selectivity, and …


On The Catalytic Activity Of Palladium Nanoparticles-Based Anodes Towards Formic Acid Electro-Oxidation: Effect Of Electrodeposition Potential, Islam M. Al-Akraa Dr., Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof Jan 2015

On The Catalytic Activity Of Palladium Nanoparticles-Based Anodes Towards Formic Acid Electro-Oxidation: Effect Of Electrodeposition Potential, Islam M. Al-Akraa Dr., Ahmad M. Mohammad Prof, Mohamed S. El-Deab Prof, Bahgat E. El-Anadouli Prof

Chemical Engineering

In this investigation, the catalytic activity of palladium nanoparticles (PdNPs)-modified glassy carbon (GC) (simply noted as PdNPs/GC) electrodes towards the formic acid electro-oxidation (FAO) was investigated. The deposition of PdNPs on the GC substrate was carried out by a potentiostatic technique at different potentials and the corresponding influence on the particles size and crystal structure of PdNPs as well as the catalytic activity towards FAO was studied. Scanning electron microscopy (SEM) demonstrated the deposition of PdNPs in spherical shapes and the average particle size of PdNPs deposited at a potential of 0 V vs. Ag/AgCl/KCl(sat.) was the smallest (ca. 8 …