Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 202

Full-Text Articles in Engineering

Che 472-Hm2: Process And Plant Design Honors, Nellone Reid Jan 2020

Che 472-Hm2: Process And Plant Design Honors, Nellone Reid

Chemical and Materials Engineering Syllabi

No abstract provided.


Validating A Reduced-Order Model For Synthetic Jet Actuators Using Cfd And Experimental Data, Tim Persoons, Rick Cressall, Aliimohammadi Sajad Jan 2018

Validating A Reduced-Order Model For Synthetic Jet Actuators Using Cfd And Experimental Data, Tim Persoons, Rick Cressall, Aliimohammadi Sajad

Articles

Synthetic jet actuators (SJA) are emerging in various engineering applications, from flow separation and noise control in aviation to thermal management of electronics. A SJA oscillates a flexible membrane inside a cavity connected to a nozzle producing vortices. A complex interaction between the cavity pressure field and the driving electronics can make it difficult to predict performance. A reduced-order model (ROM) has been developed to predict the performance of SJAs. This paper applies this model to a canonical configuration with applications in flow control and electronics cooling, consisting of a single SJA with a rectangular orifice, emanating perpendicular to the …


Mass Transfer Effects Of Particle Size On Brewing Espresso, Sichen Zhong, Lauren Elizabeth Stork Jan 2017

Mass Transfer Effects Of Particle Size On Brewing Espresso, Sichen Zhong, Lauren Elizabeth Stork

Rose-Hulman Undergraduate Research Publications

The extraction process for coffee is complicated due to the nature of the coffee. In this paper, we studied the particle size distribution for coffee grinds and further analyzed that with the help of an inverted microscope and a scanning electron microscope. We drew a conclusion that the coffee grinds can be divided into two parts: cell fragments with smaller particles size and intact coffee cells with larger particles. The intact coffee cell was found to be a porous media. Therefore, we tried to brew the espresso with both normal grind size coffee and sieved coffee to study the extraction …


Microstructure And Rheology Of Carbon Nanotubes At Air-Water Interfaces, Charles D. Young May 2016

Microstructure And Rheology Of Carbon Nanotubes At Air-Water Interfaces, Charles D. Young

Honors Scholar Theses

This work characterizes the material properties of carbon nanotubes at air-water interfaces for potential use in creating stable emulsions. Properties such as length, aspect ratio, contact angle, microstructural ordering, surface pressure, compression and shear elastic moduli, stresses, surface viscosities and non-linearity are explored. Challenges such as deviation from a classical analysis of monolayers are encountered in the form of aggregation, mechanical contributions, and interface relaxation. These factors are taken into account to explain experimental measurements and trends. Ultimately, existing models for more homogeneous systems are resolved with observations to offer insight and areas of promise moving forward.


Membrane Compatibility With Switchable Polarity Draw Solutions For Use In Forward Osmosis Applications, Benjamin Joseph Coscia May 2014

Membrane Compatibility With Switchable Polarity Draw Solutions For Use In Forward Osmosis Applications, Benjamin Joseph Coscia

Honors Scholar Theses

Water scarcity is problem being faced worldwide and present in every continent. Close to one-fifth of the world’s population has difficulty acquiring safe water, and the problem is worsening as populations continue to grow in poorer countries. As the availability of unimpaired freshwater sources dwindle, water sources, such as the oceans and saline ground waters, must be tapped. However, desalination technologies are very expensive due to a high energy requirement. Forward osmosis (FO) is a process which may be able to replace or become integrated with existing desalination technologies like reverse osmosis. FO relies on an osmotic agent, or draw …


Application Of Electrospinning Technique In The Fabrication Of A Composite Electrode For Pemfc, Joshua Sightler, Eli Mcpherson, William A. Rigdon, Xinyu Huang Jan 2012

Application Of Electrospinning Technique In The Fabrication Of A Composite Electrode For Pemfc, Joshua Sightler, Eli Mcpherson, William A. Rigdon, Xinyu Huang

Faculty Publications

The Pt/C catalysts were mixed with carbon nanotube (CNT), Nafion™ dispersion and a fiber former, polymer poly-acrylic acid (PAA), to form an ink. The ink was deposited onto aluminum foil attached to a rotating collector via an electrospinning process. The ink composition, mixing procedure, and the E-spin parameters were studied for producing a uniform nanofiber mat on the aluminum substrate. The fiber-mat containing active catalyst ingredients was heat treated and decal transferred onto a Nafion membrane to form a membrane electrode assembly (MEA).


Investigation Of Carbon Corrosion Resistance Of Cnt Containing Electrode, Diana Larrabee, William A. Rigdon, Eli Mcpherson, Joshua Sightler, Xinyu Huang Jan 2012

Investigation Of Carbon Corrosion Resistance Of Cnt Containing Electrode, Diana Larrabee, William A. Rigdon, Eli Mcpherson, Joshua Sightler, Xinyu Huang

Faculty Publications

Carbon support corrosion is one of the major degradation mechanisms of polymer electrolyte membrane (PEM) fuel cell. Carbon oxidation occurs in PEM electrode and is accelerated at high potential created by adverse operating conditions and improper distribution of reactants and products [1, 2, 3]. Carbon corrosion can lead to the thinning of the electrode layer and severe performance degradation. The detailed mechanisms of carbon support corrosion induced performance loss are still not fully understood; it is believed that the following events contribute to the decay: (1) structural collapse of the porous electrode due to the loss of carbon; (2) carbon …


Effect Of Titanium Dioxide Supports On The Activity Of Pt-Ru Toward Electrochemical Oxidation Of Methanol, Roderick E. Fuentes, Brenda L. García, John W. Weidner Jan 2011

Effect Of Titanium Dioxide Supports On The Activity Of Pt-Ru Toward Electrochemical Oxidation Of Methanol, Roderick E. Fuentes, Brenda L. García, John W. Weidner

Faculty Publications

TiO2and Nb-TiO2 were investigated as stable supports for Pt-Ru electrocatalysts towards methanol oxidation. X-ray photo-electron spectroscopy (XPS) data for all these TiO2-based supports show oxidation states of Ti4+, with no Ti3+, suggesting low electronic conductivity. However, the deposition of metal nanoparticles onto the supports at loadings of 60 wt% metal dramatically increased conductivity, making these electrodes (metal particles + support) suitable for electrochemistry even though the supports have low conductivity. For some of these TiO2-based supports, the activity of Pt-Ru towards methanol oxidation was excellent, even surpassing the activity …


Multimetallic Electrocatalysts Of Pt, Ru, And Ir Supported On Anatase And Rutile Tio2 For Oxygen Evolution In An Acid Environment, Roderick E. Fuentes, Jake Farell, John W. Weidner Jan 2010

Multimetallic Electrocatalysts Of Pt, Ru, And Ir Supported On Anatase And Rutile Tio2 For Oxygen Evolution In An Acid Environment, Roderick E. Fuentes, Jake Farell, John W. Weidner

Faculty Publications

Anatase and rutile TiO2 were investigated as stable supports for different multimetallic nanoparticles (i.e., Pt:Ru, Pt:Ir, Pt:Ru:Ir, and Ir:Ru) and tested for activity toward the oxygen evolution reaction (OER). Overall, Ir:Ru had the highest activity toward OER (i.e., current per gram of metal) compared to the other multimetallic combinations studied. This bimetallic supported on anatase TiO2 had a 53% higher current per gram of metal than an unsupported electrocatalyst of the same composition. The higher catalyst utilization of the supported electrocatalysts for OER is consistent with small, well-dispersed nanoparticles, which were observed in high resolution transmission electron microscopy images.


Quantifying Individual Potential Contributions Of The Hybrid Sulfur Electrolyzer, John A. Staser, Maximilian B. Gorensek, John W. Weidner Jan 2010

Quantifying Individual Potential Contributions Of The Hybrid Sulfur Electrolyzer, John A. Staser, Maximilian B. Gorensek, John W. Weidner

Faculty Publications

The hybrid sulfur cycle has been investigated as a means to produce clean hydrogen efficiently on a large scale by first decomposing H2SO4 to SO2, O2, and H2O and then electrochemically oxidizing SO2 back to H2SO4 with the cogeneration of H2. Thus far, it has been determined that the total cell potential for the hybrid sulfur electrolyzer is controlled mainly by water transport in the cell. Water is required at the anode to participate in the oxidation of SO2 to H2SO4 …


Mesoporous Tin Oxide As An Oxidation-Resistant Catalyst Support For Proton Exchange Membrane Fuel Cells, Peng Zhang, Sheng-Yang Huang, Branko N. Popov Jan 2010

Mesoporous Tin Oxide As An Oxidation-Resistant Catalyst Support For Proton Exchange Membrane Fuel Cells, Peng Zhang, Sheng-Yang Huang, Branko N. Popov

Faculty Publications

Mesoporous catalyst support based on tin oxide (SnO2) is synthesized with high surface area of 205 m2 g−1 and with narrow pore size distribution. Modified polyol method is used to deposit platinum on SnO2. The physical properties of the support and the SnO2-supported Pt catalyst (Pt/SnO2) are characterized by using the Brunauer, Emmett, and Teller method, X-ray diffraction, and transmission electron microscopy. The electrochemical stability and durability of the Pt/SnO2 catalyst are investigated by the accelerated stress tests proposed by the U.S. Department of Energy. Pt/SnO2 catalyst exhibits …


Effect Of Water Transport On The Production Of Hydrogen And Sulfuric Acid In A Pem Electrolyzer, John A. Staser, John W. Weidner Jan 2009

Effect Of Water Transport On The Production Of Hydrogen And Sulfuric Acid In A Pem Electrolyzer, John A. Staser, John W. Weidner

Faculty Publications

The thermochemical cycle involving the interconversion between sulfur dioxide and sulfuric acid is a promising method for efficient, large-scale production of hydrogen. A key step in the process is the oxidation of sulfur dioxide to sulfuric acid in an electrolyzer. Gaseous SO2 fed to a proton exchange membrane (PEM) electrolyzer was previously investigated and was shown to be a promising system for the electrolysis step. A critical factor in the performance of this gas-fed electrolyzer is the management of water since it: (i) is needed as a reactant, (ii) determines the product sulfuric acid concentration, …


Inhomogeneous Degradation Of Polymer Electrolyte Membrane In Pem Fuel Cells, Xinyu Huang, Wonseok Yoon Jan 2009

Inhomogeneous Degradation Of Polymer Electrolyte Membrane In Pem Fuel Cells, Xinyu Huang, Wonseok Yoon

Faculty Publications

Membrane durability is one of the technical barriers for the commercialization of polymer electrolyte membrane (PEM) fuel cells. Membrane embrittlement (a form of mechanical weakening) can lead to the frequently observed “sudden death” behavior of PEM fuel cells. It is the objective of this study to explore the fundamental mechanisms of the mechanical weakening of perfluorosulfonic acid (PFSA) based electrolyte membranes during the accelerated degradation test.


Electrochemical Removal Of Carbon Monoxide In Reformate Hydrogen For Fueling Proton Exchange Membrane Fuel Cells, Sivagaminathan Balasubramanian, Charles E. Holland, John W. Weidner Jan 2009

Electrochemical Removal Of Carbon Monoxide In Reformate Hydrogen For Fueling Proton Exchange Membrane Fuel Cells, Sivagaminathan Balasubramanian, Charles E. Holland, John W. Weidner

Faculty Publications

A twin-cell electrochemical filter is demonstrated to reduce the CO concentration in reformate hydrogen. In this design, the potential and gas flow are switched between the two filter cells so that alternative CO adsorption and oxidation occur in each cell while providing a continuous flow of H2 to a fuel cell. The effects of filter switching time and applied potential on the CO concentration of gas exiting the filter are presented here for a CO concentration of 1000 ppm in nitrogen flowing at 100 cm3/min. The parasitic loss of hydrogen from a corresponding reformate stream was estimated to be 1.5%.


Sulfur Dioxide Crossover During The Production Of Hydrogen And Sulfuric Acid In A Pem Electrolyzer, John A. Staser, John W. Weidner Jan 2009

Sulfur Dioxide Crossover During The Production Of Hydrogen And Sulfuric Acid In A Pem Electrolyzer, John A. Staser, John W. Weidner

Faculty Publications

A proton exchange membrane (PEM) electrolyzer has been investigated as a viable system for the electrolysis step in the thermochemical conversion of sulfur dioxide to sulfuric acid for the large-scale production of hydrogen. Unfortunately, during operation, sulfur dioxide can diffuse from the anode to the cathode. This has several negative effects, including reduction to sulfur that could potentially damage the electrode, consumption of current that would otherwise be used for the production of hydrogen, introduction of oxygen and SO2 to the hydrogen stream, and loss of sulfur to the cycle. However, proper water management can reduce or eliminate the …


Hydrogen Peroxide Formation Rates In A Pemfc Anode And Cathode: Effect Of Humidity And Temperature, Vijay A. Sethuraman, John W. Weidner, Andrew T. Haug, Sathya Motupally, Lesia V. Protsailo Jan 2008

Hydrogen Peroxide Formation Rates In A Pemfc Anode And Cathode: Effect Of Humidity And Temperature, Vijay A. Sethuraman, John W. Weidner, Andrew T. Haug, Sathya Motupally, Lesia V. Protsailo

Faculty Publications

Hydrogen peroxide (H2O2) formation rates in a proton exchange membrane fuel cell (PEMFC) anode and cathode were estimated as a function of humidity and temperature by studying the oxygen reduction reaction (ORR) on a rotating ring disk electrode. Fuel cell conditions were replicated by depositing a film of Pt/Vulcan XC-72 catalyst onto the disk and by varying the temperature, dissolved O2 concentration, and the acidity levels in hydrochloric acid (HClO4). The HClO4 acidity was correlated to ionomer water activity and hence fuel cell humidity. The H2O2 formation rates showed …


Durability Of Perfluorosulfonic Acid And Hydrocarbon Membranes: Effect Of Humidity And Temperature, Vijay A. Sethuraman, John W. Weidner, Andrew T. Haug, Lesia V. Protsailo Jan 2008

Durability Of Perfluorosulfonic Acid And Hydrocarbon Membranes: Effect Of Humidity And Temperature, Vijay A. Sethuraman, John W. Weidner, Andrew T. Haug, Lesia V. Protsailo

Faculty Publications

The effect of humidity on the chemical stability of two types of membranes [i.e., perfluorosulfonic acid type (PFSA, Nafion 112) and biphenyl sulfone hydrocarbon type, (BPSH-35)] was studied by subjecting the membrane electrode assemblies (MEAs) to open-circuit voltage (OCV) decay and potential cycling tests at elevated temperatures and low inlet-gas relative humidities. The BPSH-35 membranes showed poor chemical stability in ex situ Fenton tests compared to that of Nafion membranes. However, under fuel cell conditions, BPSH-35 MEAs outperformed Nafion 112 MEAs in both the OCV decay and potential cycling tests. For both membranes, (i) at a given temperature, …


Effect Of Water On The Electrochemical Oxidation Of Gas-Phase So2 In A Pem Electrolyzer For H2 Production, John Staser, Ramaraja P. Ramasamy, Premkumar Sivasubramanian, John W. Weidner Jan 2007

Effect Of Water On The Electrochemical Oxidation Of Gas-Phase So2 In A Pem Electrolyzer For H2 Production, John Staser, Ramaraja P. Ramasamy, Premkumar Sivasubramanian, John W. Weidner

Faculty Publications

Water plays a critical role in producing hydrogen from the electrochemical oxidation of SO2 in a proton exchange membrane (PEM) electrolyzer. Not only is water needed to keep the membrane hydrated, but it is also a reactant. One way to supply water is to dissolve SO2 in sulfuric acid and feed that liquid to the anode, but this process results in significant diffusion resistance for the SO2. Alternatively, we have developed a process where SO2 is fed as a gas to the anode compartment and reacts with water crossing the membrane to produce sulfuric acid. There was concern that the …


Low-Temperature Synthesis Of A Ptru/Nb0.1ti0.9o2 Electrocatalyst For Methanol Oxidation, Brenda L. García, Roderick Fuentes, John W. Weidner Jan 2007

Low-Temperature Synthesis Of A Ptru/Nb0.1ti0.9o2 Electrocatalyst For Methanol Oxidation, Brenda L. García, Roderick Fuentes, John W. Weidner

Faculty Publications

Niobium was doped into anatase TiO2 support at 10 mol % (Nb0.1Ti0.9O2) using sol-gel chemistry. A PtRu/Nb0.1Ti0.9O2 catalyst was synthesized by LiBH4 reduction in tetrahydrofuran. The methanol electro-oxidation activity of the catalyst shows that this oxide support was electrically conductive. The current (A/gPt) was 6% higher on the PtRu/Nb0.1Ti0.9O2 catalyst compared to a commercial PtRu/C catalyst at 25°C. The electrochemically active surface area of the PtRu/C was 94% higher than PtRu/Nb0.1Ti0.9O2, thus the current per active site was 100% higher on PtRu/Nb0.1Ti0.9O2. A membrane electrode assembly with PtRu/Nb0.1Ti0.9O2 had 46% higher current (A/gPt) than an equivalent E-TEK membrane electrode assembly …


Effect Of Diphenyl Siloxane On The Catalytic Activity Of Pt On Carbon, Vijay A. Sethuraman, John W. Weidner, Lesia V V. Protsailo Jan 2007

Effect Of Diphenyl Siloxane On The Catalytic Activity Of Pt On Carbon, Vijay A. Sethuraman, John W. Weidner, Lesia V V. Protsailo

Faculty Publications

The effect of silicone on the catalytic activity of Pt for oxygen reduction and hydrogen adsorption was studied using diphenyl siloxane as a source compound at a rotating disk electrode (RDE). Diphenyl siloxane did not affect the catalytic activity of Pt when it was injected into the electrolyte. However, it blocked the oxygen reduction reaction when it was premixed with the catalyst. Proton transport was not blocked in either case. We postulate that diphenyl siloxane induces hydrophobicity and causes local water starvation, thereby blocking oxygen transport. Hence, the slow leaching of silicone seals in a fuel cell could cause silicon …


Modeling Li/CfX-Svo Hybrid-Cathode Batteries, Parthasarathy M. Gomadam, Donald R. Merritt, Erik R. Scott, Craig L. Schmidt, Paul M. Skarstad, John W. Weidner Jan 2007

Modeling Li/CfX-Svo Hybrid-Cathode Batteries, Parthasarathy M. Gomadam, Donald R. Merritt, Erik R. Scott, Craig L. Schmidt, Paul M. Skarstad, John W. Weidner

Faculty Publications

A mathematical model is developed that predicts the voltage-capacity behavior of a primary lithium battery containing a hybrid cathode, which combines the high energy density of carbon monofluoride (CFx) and the higher power density of silver vanadium oxide (SVO). The model is developed using material balances and kinetic expressions for each material, extracting kinetic and thermodynamic parameters from data collected on CFx and SVO batteries, and then integrating this information into a hybrid system. The full model is validated by comparing simulations to experimental data on Li/CFx-SVO hybrid-cathode batteries of various designs and for a …


Development Of Ruthenium-Based Catalysts For Oxygen Reduction Reaction, Lingyun Liu, Hansung Kim, Jong-Won Lee, Branko N. Popov Jan 2007

Development Of Ruthenium-Based Catalysts For Oxygen Reduction Reaction, Lingyun Liu, Hansung Kim, Jong-Won Lee, Branko N. Popov

Faculty Publications

A process was developed to synthesize ruthenium-based chelate (RuNx) electrocatalysts for the oxygen reduction reaction, using RuCl3 and propylene diammine as the Ru and N precursors, respectively. High-temperature pyrolysis has a critical role in the formation of the catalytic Ru–N sites for oxygen reduction. The RuNx catalyst modified in the presence of nitrogen-containing organic exhibited comparable catalytic activity and selectivity for oxygen reduction to the carbon-supported Pt catalyst in acidic media. The catalyst generates less than 2% hydrogen peroxide during oxygen reduction.


Novel Pemfc Cathodes Prepared By Pulse Deposition, Subasri M. Ayyadurai, Yoon-Seok Choi, Prabhu Ganesan, Swaminatha P. Kumaraguru, Branko N. Popov Jan 2007

Novel Pemfc Cathodes Prepared By Pulse Deposition, Subasri M. Ayyadurai, Yoon-Seok Choi, Prabhu Ganesan, Swaminatha P. Kumaraguru, Branko N. Popov

Faculty Publications

A pulse electrodeposition method of preparing thin platinum catalyst layers for polymer electrolyte membrane fuel cell (PEMFC) cathodes has been developed through surface activation of the gas diffusion layer (GDL) by a wetting agent. The performance of the catalyst layer was optimized by wetting agent type, immersion time in the wetting agent, and pulse deposition parameters such as total charge density, peak current density, and duty cycle ratio. The Toff time played a more important role than the Ton time in determining the electrode characteristics such as high concentration of Pt, smaller particle size, and loading. Pt cathodes …


Development Of Method For Synthesis Of Pt–Co Cathode Catalysts For Pem Fuel Cells, Xuguang Li, Héctor R. Colón-Mercado, Gang Wu, Jong-Won Lee, Branko N. Popov Jan 2007

Development Of Method For Synthesis Of Pt–Co Cathode Catalysts For Pem Fuel Cells, Xuguang Li, Héctor R. Colón-Mercado, Gang Wu, Jong-Won Lee, Branko N. Popov

Faculty Publications

A procedure was developed to synthesize a platinum–cobalt (Pt–Co) alloy electrocatalyst for oxygen reduction using Co/C composite as a support. The Pt–Co/C catalysts were synthesized through: (i) chemical oxidation of carbon black, (ii) Co deposition on the oxidized carbon using a chelation method, (iii) chemical treatment in an acidic medium to remove excess of Co on the carbon surface, (iv) Pt deposition onto the Co/C support, and (v) postheat treatment to form the Pt–Co alloy catalyst. The synthesized Pt–Co/C catalyst showed improved activity and long-term stability in polymer electrolyte membrane …


Exafs Characterization Of Dendrimer-Derived Pt/Γ-Al2o3, A. Siani, O. S. Alexeev, C. T. Williams, Harry J. Ploehn, M. D. Amiridis Jan 2007

Exafs Characterization Of Dendrimer-Derived Pt/Γ-Al2o3, A. Siani, O. S. Alexeev, C. T. Williams, Harry J. Ploehn, M. D. Amiridis

Faculty Publications

The various steps involved in the preparation of a Pt/-Al2O3 material using hydroxyl-terminated generation four (G4OH) PAMAM dendrimers as templates were monitored by EXAFS. The results indicate that Cl ligands in the Pt precursors (H2PtCl6 and K2PtCl4) were partially replaced by aquo ligands upon hydrolysis to form [PtCl3(H2O)3]+ and [PtCl2(H2O)2] species. After interaction of such species with G4OH, Cl ligands from the first coordination shell of Pt were further replaced by nitrogen atoms from the dendrimer interior, …


Modeling Volume Changes In Porous Electrodes, Parthasarathy M. Gomadam, John W. Weidner Jan 2006

Modeling Volume Changes In Porous Electrodes, Parthasarathy M. Gomadam, John W. Weidner

Faculty Publications

A three-dimensional mathematical model is presented to describe volume changes in porous electrodes occurring during operation. Material conservation equations are used to derive governing relationships between electrode dimensions and porosity for deposition/precipitation, intercalation, and ionomer-based electrodes. By introducing a parameter, called the swelling coefficient, the relative magnitudes of the change in electrode dimensions and the change in porosity are determined. The swelling coefficient is design-dependent and measured experimentally for a given cell design. The model is general and forms a critical addition required to extend the existing porous electrode models to include volume change effects. For the special case of …


Development Of An Electroless Method To Deposit Corrosion-Resistant Silicate Layers On Metallic Substrates, Swaminatha P. Kumaraguru, Basker Veeraraghavan, Branko N. Popov Jan 2006

Development Of An Electroless Method To Deposit Corrosion-Resistant Silicate Layers On Metallic Substrates, Swaminatha P. Kumaraguru, Basker Veeraraghavan, Branko N. Popov

Faculty Publications

A novel electroless method for depositing corrosion-resistant silicate layers on metallic substrates from aqueous solutions has been developed. The silicate layer was deposited from an aqueous solution of sodium silicate (3.22 weight ratio sodium silicate, 37.5% solution in water from PQ Corporation) and sodium borohydride. The technique is demonstrated by forming a passive film on galvanized steel. Deposition parameters such as concentration of the bath, temperature, and pH have been optimized based on the corrosion characteristics of the final coating. Studies on the coating reveal the formation of a very thin (5 nm) zinc disilicate layer followed by a much …


A Mathematical Model For A Lithium-Ion Battery/Electrochemical Capacitor Hybrid System, Godfrey Sikha, Ralph E. White, Branko N. Popov Jan 2005

A Mathematical Model For A Lithium-Ion Battery/Electrochemical Capacitor Hybrid System, Godfrey Sikha, Ralph E. White, Branko N. Popov

Faculty Publications

A one-dimensional model for predicting the performance of a battery/electrochemical capacitor-hybrid system has been developed. Simulation results are presented for a LiCoO2|LiPF6 ethylene carbonate/dimethyl carbonate|carbon battery system and a Maxwell PC 10F carbon double-layer electrochemical capacitor. The current shared between the battery and the electrochemical capacitor at very short times depends on the ohmic resistances of the battery and the capacitor. As the discharge proceeds, the operating conditions such as frequency, duty ratio, and peak pulse discharge current control the current shared among parallel circuits. These parameters also determine the extent of the run time increase of …


Development Of First Principles Capacity Fade Model For Li-Ion Cells, P. Ramadass, Bala Haran, Parthasarathy M. Gomadam, Ralph E. White, Branko N. Popov Jan 2004

Development Of First Principles Capacity Fade Model For Li-Ion Cells, P. Ramadass, Bala Haran, Parthasarathy M. Gomadam, Ralph E. White, Branko N. Popov

Faculty Publications

A first principles-based model has been developed to simulate the capacity fade of Li-ion batteries. Incorporation of a continuous occurrence of the solvent reduction reaction during constant current and constant voltage (CC-CV) charging explains the capacity fade of the battery. The effect of parameters such as end of charge voltage and depth of discharge, the film resistance, the exchange current density, and the over voltage of the parasitic reaction on the capacity fade and battery performance were studied qualitatively. The parameters that were updated for every cycle as a result of the side reaction were state-of-charge of the electrode materials …


Effect Of Porosity On The Capacity Fade Of A Lithium-Ion Battery: Theory, Godfrey Sikha, Branko N. Popov, Ralph E. White Jan 2004

Effect Of Porosity On The Capacity Fade Of A Lithium-Ion Battery: Theory, Godfrey Sikha, Branko N. Popov, Ralph E. White

Faculty Publications

A mathematical model is presented to predict the performance of a lithium-ion battery. It includes the changes in the porosity of the material due to the reversible intercalation processes and the irreversible parasitic reaction. The model was also extended to predict the capacity fade in a lithium-ion battery based on the unwanted parasitic reaction that consumes Li+ along with the changes in the porosities of the electrodes with cycling due to the continuous parasitic side reaction. The model can be used to predict the drop in the voltage profile, change in the state of charge, and the effects of …