Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Developing General Purpose Apps To Automate Image Analysis Of Wave-Augmented-Varicose-Explosion Atomization And Other Multi-Phase Interfacial Flows, Ethan Newkirk May 2024

Developing General Purpose Apps To Automate Image Analysis Of Wave-Augmented-Varicose-Explosion Atomization And Other Multi-Phase Interfacial Flows, Ethan Newkirk

Senior Honors Theses

Atomization involves disrupting a flow of contiguous liquid into small droplets ranging from one submicron to several hundred microns (micrometers) in diameter through the processes of exerting sufficient forces that disrupt the retaining surface tensions of the liquid. Understanding this phenomenon requires high-speed imaging from physical models or rigorous multiphase computational fluid dynamics models. We produce a MATLAB application that utilizes various methods of image analysis to quickly analyze and store mathematical data from detailed image analyses. We present a user with numerous tools and capabilities that provide results that deviate from 1.8% to 8.9% of the original image sequence …


Thermal Atomization On Superhydrophobic Surfaces Of Varying Temperature Jump Length, Eric D. Lee, Daniel Maynes, Julie Crockett, Brian D. Iverson Dec 2023

Thermal Atomization On Superhydrophobic Surfaces Of Varying Temperature Jump Length, Eric D. Lee, Daniel Maynes, Julie Crockett, Brian D. Iverson

Faculty Publications

This paper presents an experimental study of drop impingement and thermal atomization on hydrophobic and superhydrophobic (SH) surfaces. Superhydrophobic surfaces having both microscale and nanoscale geometry are considered. Microscale SH surfaces are coated with a hydrophobic coating and exhibit micropillars and cavities which are classified using the surface solid fraction and center to center pitch. The solid fraction and pitch values explored in this study range from 0.05-1.0 and 8-60 μm respectively. Nanoscale textured surfaces are created by applying a blanket layer of carbon nanotubes. Both types of surfaces are further classified by a temperature jump length (λ …


Imaging Diagnostics For Jet Breakup Into Droplets: A Review, Anu Osta Oct 2022

Imaging Diagnostics For Jet Breakup Into Droplets: A Review, Anu Osta

Henry M. Rowan College of Engineering Faculty Scholarship

A concise review of the recent developments in some of the standard optical diagnostics applied for primary jet breakup studies has been presented here. Primary breakup is the core breakup of liquid jets and sheets into droplets upon its interaction with the ambient gaseous atmosphere. This phenomenon is encountered in various aerodynamic, fluid dynamic, and combustion situations. The imaging diagnostics reviewed here include photography, high-speed imaging, shadowgraphy, digital holography, ballistic imaging, jet core illumination, thermal imaging, Mie imaging, x-ray phase contrast imaging, and laser-induced fluorescence. The advantages and limitations of each technique, their success, and future developmental trend are discussed.


Experimental And Mathematical Tools To Predict Droplet Size And Velocity Distribution For A Two-Fluid Nozzle, Sadegh Poozesh, Nelson K. Akafuah, Heather R. Campbell, Faezeh Bashiri, Kozo Saito Dec 2020

Experimental And Mathematical Tools To Predict Droplet Size And Velocity Distribution For A Two-Fluid Nozzle, Sadegh Poozesh, Nelson K. Akafuah, Heather R. Campbell, Faezeh Bashiri, Kozo Saito

Mechanical Engineering Faculty Publications

Despite progress in laser-based and computational tools, an accessible model that relies on fundamentals and offers a reasonably accurate estimation of droplet size and velocity is lacking, primarily due to entangled complex breakup mechanisms. Therefore, this study aims at using the integral form of the conservation equations to create a system of equations by solving which, the far-field secondary atomization can be analyzed through predicting droplet size and velocity distributions of the involved phases. To validate the model predictions, experiments are conducted at ambient conditions using water, methanol, and acetone as model fluids with varying formulation properties, such as density, …


An Integrated Computational Materials Engineering-Anchored Closed-Loop Method For Design Of Aluminum Alloys For Additive Manufacturing, Saket Thapliyal, Mageshwari Komarasamy, Shivakant Shukla, Le Zhou, Holden Hyer, Sharon Park, Yongho Sohn, Rajiv S. Mishra Mar 2020

An Integrated Computational Materials Engineering-Anchored Closed-Loop Method For Design Of Aluminum Alloys For Additive Manufacturing, Saket Thapliyal, Mageshwari Komarasamy, Shivakant Shukla, Le Zhou, Holden Hyer, Sharon Park, Yongho Sohn, Rajiv S. Mishra

Mechanical Engineering Faculty Research and Publications

A closed-loop approach based on integrated computational material engineering was used to design, fabricate and characterize an Al–1.5Cu–0.8Sc–0.4Zr (wt%) alloy for laser powder bed fusion additive manufacturing (AM). Finalization of composition and prediction of solidification behavior and mechanical properties were done using calculation of phase diagrams (CALPHAD) and analytical tools. The microstructure of the printed alloy in as-built condition consisted of crack-free regions with fine-equiaxed grains which was consistent with CALPHAD results. Yield strength (YS) of ~349 ± 8 MPa was also in more than 90% agreement with predicted YS. The findings demonstrate an efficient methodology for application-based alloy design …


Spatial Positioning And Operating Parameters Of A Rotary Bell Sprayer: 3d Mapping Of Droplet Size Distributions, Adnan Darwish Ahmad, Binit B. Singh, Mark Doerre, Ahmad M. Abubaker, Masoud Arabghahestani, Ahmad A. Salaimeh, Nelson K. Akafuah Sep 2019

Spatial Positioning And Operating Parameters Of A Rotary Bell Sprayer: 3d Mapping Of Droplet Size Distributions, Adnan Darwish Ahmad, Binit B. Singh, Mark Doerre, Ahmad M. Abubaker, Masoud Arabghahestani, Ahmad A. Salaimeh, Nelson K. Akafuah

Institute of Research for Technology Development Faculty Publications

In this study, we evaluated the fundamental physical behavior during droplet formation and flow from a rotary bell spray in the absence of an electrostatic field. The impact of a wide range of operating parameters of the rotary bell sprayer, such as flow rates, rotational speeds, and spatial positioning, on droplet sizes and size distributions using a three-dimensional (3-D) mapping was studied. The results showed that increasing the rotational speed caused the Sauter mean diameter of the droplets to decrease while increasing flow rate increased the droplet sizes. The rotational speed effect, however, was dominant compared to the effect of …


Study Of Near-Cup Droplet Breakup Of An Automative Electrostatic Rotary Bell (Esrb) Atomizer Using High-Speed Shadowgraph Imaging, Jacob E. Wilson, Stephen William Grib, Adnan Darwish Ahmad, Michael W. Renfro, Scott A. Adams, Ahmad Salaimeh May 2018

Study Of Near-Cup Droplet Breakup Of An Automative Electrostatic Rotary Bell (Esrb) Atomizer Using High-Speed Shadowgraph Imaging, Jacob E. Wilson, Stephen William Grib, Adnan Darwish Ahmad, Michael W. Renfro, Scott A. Adams, Ahmad Salaimeh

Mechanical Engineering Faculty Publications

Electrostatic Rotary bell (ESRB) atomizers are used as the dominant means of paint application by the automotive industry. They utilize the high rotational speed of a cup to induce primary atomization of a liquid along with shaping air to provide secondary atomization and transport. In order to better understand the fluid breakup mechanisms involved in this process, high-speed shadowgraph imaging was used to visualize the edge of a serrated rotary bell at speeds varying between 5000 and 12,000 RPM and with a water flow rate of 250 ccm. A multi-step image processing algorithm was developed to differentiate between ligaments and …