Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Data From: Machine Learning Predictions Of Electricity Capacity, Marcus Harris, Elizabeth Kirby, Ameeta Agrawal, Rhitabrat Pokharel, Francis Puyleart, Martin Zwick Dec 2022

Data From: Machine Learning Predictions Of Electricity Capacity, Marcus Harris, Elizabeth Kirby, Ameeta Agrawal, Rhitabrat Pokharel, Francis Puyleart, Martin Zwick

Systems Science Faculty Datasets

This research applies machine learning methods to build predictive models of Net Load Imbalance for the Resource Sufficiency Flexible Ramping Requirement in the Western Energy Imbalance Market. Several methods are used in this research, including Reconstructability Analysis, developed in the systems community, and more well-known methods such as Bayesian Networks, Support Vector Regression, and Neural Networks. The aims of the research are to identify predictive variables and obtain a new stand-alone model that improves prediction accuracy and reduces the INC (ability to increase generation) and DEC (ability to decrease generation) Resource Sufficiency Requirements for Western Energy Imbalance Market participants. This …


Zero Net Energy Test House, Timothy Hemsath, James D. Goedert, Avery Don Schwer, Yong Cho Sep 2022

Zero Net Energy Test House, Timothy Hemsath, James D. Goedert, Avery Don Schwer, Yong Cho

Durham School of Architectural Engineering and Construction: Faculty Publications

This paper describes the first phase of a residential research program to reduce the impact of new construction on the environment through research and education using a Zero Net Energy Test House as a framework. Containing four bedrooms, three and a half baths, the 1,800 square foot house, 1,000 square foot basement, is located in Omaha, Nebraska. It is being used to validate several research projects and provides a platform for applications research of a number of technological advances. Laminated photovoltaic solar panels, a wind turbine, and an occupant monitoring energy control system are some of the sustainable design innovations …


Extending The Low-Temperature Operation Of Sodium Metal Batteries Combining Linear And Cyclic Ether-Based Electrolyte Solutions, Haoyu Zhu, Hui Xiong Aug 2022

Extending The Low-Temperature Operation Of Sodium Metal Batteries Combining Linear And Cyclic Ether-Based Electrolyte Solutions, Haoyu Zhu, Hui Xiong

Materials Science and Engineering Faculty Publications and Presentations

Nonaqueous sodium-based batteries are ideal candidates for the next generation of electrochemical energy storage devices. However, despite the promising performance at ambient temperature, their low-temperature (e.g., < 0 °C) operation is detrimentally affected by the increase in the electrolyte resistance and solid electrolyte interphase (SEI) instability. Here, to circumvent these issues, we propose specific electrolyte formulations comprising linear and cyclic ether-based solvents and sodium trifluoromethanesulfonate salt that are thermally stable down to −150 °C and enable the formation of a stable SEI at low temperatures. When tested in the Na||Na coin cell configuration, the low-temperature electrolytes enable long-term cycling down to −80 °C. Via ex situ physicochemical (e.g., X-ray photoelectron spectroscopy, cryogenic transmission electron microscopy and atomic force microscopy) electrode measurements and density functional theory calculations, we investigate the mechanisms responsible for efficient low-temperature electrochemical performance. We also report the assembly and testing between −20 °C and −60 °C of full Na||Na3V2(PO4)3 coin cells. The cell tested at −40 °C shows an initial discharge capacity of 68 mAh g−1 with a capacity retention of approximately 94% after 100 cycles at 22 mA g−1.


Applications Of Agent-Based Modeling (Abm) In Enhancing Facility Operation And Management, Ali Khodabandelu, Jee Woong Park Jun 2022

Applications Of Agent-Based Modeling (Abm) In Enhancing Facility Operation And Management, Ali Khodabandelu, Jee Woong Park

Civil and Environmental Engineering and Construction Faculty Research

Agent-based modeling (ABM), as a relatively new simulation technique, has recently gained in popularity in the civil engineering domain due to its uniquely advantageous features. Among many civil engineering applications, ABM has been applied to facility operation and management, such as energy consumption management, as well as the enhancement of maintenance and repair processes. The former studies used ABM to manage energy consumption through simulating human energy-related behaviors and their interactions with facilities, as well as electrical, heating, and cooling systems and appliances, while the latter used ABM to enhance maintenance process through facilitating coordination, negotiation, and decision making between …


Economic Feasibility Analysis Of Variable-Speed Pumps By Simulating 15 Multiple Water Distribution Systems, Conrad B. Truettner, Brian D. Barkdoll Apr 2022

Economic Feasibility Analysis Of Variable-Speed Pumps By Simulating 15 Multiple Water Distribution Systems, Conrad B. Truettner, Brian D. Barkdoll

Michigan Tech Publications

The UN Sustainability Goals address measures to reduce environmental pollution. Water distribution systems (WDSs) use electric energy, which pollutes the atmosphere through, at least partly, the burning of coal. This study simulates, through modeling, variable-speed pumps (VSPs) on 15 different real WDSs on the network solver EPANET and analyzes the payback period. An algorithm is introduced here to select the optimal pump speed pattern to save the most energy while satisfying the constrain of sufficient pressure at all times and all locations. It was found that five of the 15 systems operated unsuccessfully using a VSP, due to the VSP …


Resource Availability And Implications For The Development Of Plug‐In Electric Vehicles, Ona Egbue, Suzanna Long, Seong Dae Kim Feb 2022

Resource Availability And Implications For The Development Of Plug‐In Electric Vehicles, Ona Egbue, Suzanna Long, Seong Dae Kim

Engineering Management and Systems Engineering Faculty Research & Creative Works

Plug‐in electric vehicles (PEVs) have immense potential for reducing greenhouse gas emissions and dependence on fossil fuels, and for smart grid applications. Although a great deal of research is focused on technological limitations that affect PEV battery performance targets, a major and arguably equal concern is the constraint imposed by the finite availability of elements or resources used in the manufacture of PEV batteries. Availability of resources, such as lithium, for batteries is critical to the future of PEVs and is, therefore, a topic that needs attention. This study addresses the issues related to lithium availability and sustainability, particularly supply …


Resource Availability And Implications For The Development Of Plug‐In Electric Vehicles, Ona Egbue, Suzanna Long, Seong Dae Kim Feb 2022

Resource Availability And Implications For The Development Of Plug‐In Electric Vehicles, Ona Egbue, Suzanna Long, Seong Dae Kim

Engineering Management and Systems Engineering Faculty Research & Creative Works

Plug‐in electric vehicles (PEVs) have immense potential for reducing greenhouse gas emissions and dependence on fossil fuels, and for smart grid applications. Although a great deal of research is focused on technological limitations that affect PEV battery performance targets, a major and arguably equal concern is the constraint imposed by the finite availability of elements or resources used in the manufacture of PEV batteries. Availability of resources, such as lithium, for batteries is critical to the future of PEVs and is, therefore, a topic that needs attention. This study addresses the issues related to lithium availability and sustainability, particularly supply …


Clean Process To Utilize The Potassium-Containing Phosphorous Rock With Simultaneous Hcl And Kcl Production Via The Steam-Mediated Reactions, Yunshan Wang, Lufang Shi, Houli Li, Yixiao Wang, Zhiying Wang, Xuebin An, Mingzhu Tang, Gang Yang, Jun He, Jing Hu, Yong Sun Jan 2022

Clean Process To Utilize The Potassium-Containing Phosphorous Rock With Simultaneous Hcl And Kcl Production Via The Steam-Mediated Reactions, Yunshan Wang, Lufang Shi, Houli Li, Yixiao Wang, Zhiying Wang, Xuebin An, Mingzhu Tang, Gang Yang, Jun He, Jing Hu, Yong Sun

Research outputs 2022 to 2026

In this paper, a clean process based on the steam-mediated reactions for simultaneous HCl and KCl production using the potassium (K)-containing phosphorous rock as a precursor is proposed. Through hydrochloric acid (HCl) leaching, not only the generation of H3PO4and CaCl2 (via further precipitation) were realized but also the acid-insoluble residue [phosphorous-rock slag (PS)] rich in elements, that is, K, Al, Si, and so on, in the form of microcline (KAlSi3O8) and quartz (SiO2) was obtained and became readily available for further HCl and KCl generation. Over 95 % of …


Artificial Intelligence-Based Material Discovery For Clean Energy Future, Reza Maleki, Mohsen Asadnia, Amir Razmjou Jan 2022

Artificial Intelligence-Based Material Discovery For Clean Energy Future, Reza Maleki, Mohsen Asadnia, Amir Razmjou

Research outputs 2022 to 2026

Artificial intelligence (AI)-assisted materials design and discovery methods can come to the aid of global concerns for introducing new efficient materials in different applications. Also, a sustainable clean future requires a transition to a low-carbon economy that is material-intensive. AI-assisted methods advent as inexpensive and accelerated methods in the design of new materials for clean energies. Herein, the emerging research area of AI-assisted material discovery with a focus on developing clean energies is discussed. The applications, advantages, and challenges of using AI in material discovery are discussed and the future perspective of using AI in clean energy is studied. This …