Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Grant Funding Needs Parallel The Start-Up Venture: An Analogy For Translational Research Success, Brian W. Pogue Aug 2018

Grant Funding Needs Parallel The Start-Up Venture: An Analogy For Translational Research Success, Brian W. Pogue

Dartmouth Scholarship

This editorial offers some ways to think about how best to position a research group for funding, by examining the parallels between what is needed for translational grants versus industry start-ups.


Medical Perspective Articles To Stimulate The Field For Needs-Finding, Brian W. Pogue Jun 2018

Medical Perspective Articles To Stimulate The Field For Needs-Finding, Brian W. Pogue

Dartmouth Scholarship

This editorial by the journal's Editor in Chief, Brian Pogue, explains the need for a new type of paper.


Self-Assembly Of (111)-Oriented Tensile-Strained Quantum Dots By Molecular Beam Epitaxy, Christopher F. Schuck, Robin A. Mccown, Ashlie Hush, Austin Mello, Simon Roy, Joseph W. Spinuzzi, Paul J. Simmonds May 2018

Self-Assembly Of (111)-Oriented Tensile-Strained Quantum Dots By Molecular Beam Epitaxy, Christopher F. Schuck, Robin A. Mccown, Ashlie Hush, Austin Mello, Simon Roy, Joseph W. Spinuzzi, Paul J. Simmonds

Materials Science and Engineering Faculty Publications and Presentations

The authors report on a comprehensive study of the growth of coherently strained GaAs quantum dots (QDs) on (111) surfaces via the Stranski–Krastanov (SK) self-assembly mechanism. Recent reports indicate that the long-standing challenges, whereby the SK growth mechanism could not be used to synthesize QDs on (111) surfaces, or QDs under tensile strain, have been overcome. However, a systematic study of the SK growth of (111)-oriented, tensile-strained QDs (TSQDs) as a function of molecular beam epitaxy growth parameters is still needed. Here, the authors explore the effects of deposition amount, substrate temperature, growth rate, and V/III flux ratio on the …


Investigation Of Track Structure And Condensed History Physics Models For Applications In Radiation Dosimetry On A Micro And Nano Scale In Geant4, Peter Lazarakis, Sebastien Incerti, Vladimir N. Ivanchenko, Ioanna Kyriakou, Dimitris Emfietzoglou, Stephanie Corde, Anatoly B. Rosenfeld, Michael L. F Lerch, Moeava Tehei, Susanna Guatelli Jan 2018

Investigation Of Track Structure And Condensed History Physics Models For Applications In Radiation Dosimetry On A Micro And Nano Scale In Geant4, Peter Lazarakis, Sebastien Incerti, Vladimir N. Ivanchenko, Ioanna Kyriakou, Dimitris Emfietzoglou, Stephanie Corde, Anatoly B. Rosenfeld, Michael L. F Lerch, Moeava Tehei, Susanna Guatelli

Faculty of Engineering and Information Sciences - Papers: Part B

Monte Carlo methods apply various physical models, either condensed history (CH) or track structure (TS), to simulate the passage of radiation through matter. Both CH and TS models continue to be applied to radiation dosimetry investigations on a micro and nano scale. However, as there has been no systematic comparison of the use of these models for such applications there can be no quantification of the uncertainty that is being introduced by the choice of physics model. A comparison of CH and TS models available in Geant4, along with a quantification of the differences in calculated quantities on a micro …