Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

2008

Aerospace Engineering

Institution
Keyword
Publication

Articles 1 - 30 of 59

Full-Text Articles in Engineering

When Go-Around Is Impossible - Defining The Point Of No Return, Nihad E. Daidzic,, Thomas Peterson Dec 2008

When Go-Around Is Impossible - Defining The Point Of No Return, Nihad E. Daidzic,, Thomas Peterson

Aviation Department Publications

No abstract provided.


Determination Of Vibrational Energy Levels And Transition Dipole Moments Of Co2 Molecules By Density Functional Theory, Zhi Liang, Hai-Lung Tsai Dec 2008

Determination Of Vibrational Energy Levels And Transition Dipole Moments Of Co2 Molecules By Density Functional Theory, Zhi Liang, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An Efficient Method is Presented to Calculate the Intra-Molecular Potential Energies and Electrical Dipole Moments of CO2 Molecules at the Electronic Ground State by Solving the Kohn-Sham (KS) Equation for a Total of 101 992 Nuclear Configurations. the Projector-Augmented Wave (PAW) Exchange-Correlation Potential Functionals and Plane Wave (PW) Basis Functions Were Used in Solving the KS Equation. the Calculated Intra-Molecular Potential Function Was Then Included in the Pure Vibrational Schrödinger Equation to Determine the Vibrational Energy Eigen Values and Eigen Functions. the Vibrational Wave Functions Combined with the Calculated Dipole Moment Function Were Used to Determine the Transition Dipole Moments. …


Biogeography-Based Optimization, Daniel J. Simon Dec 2008

Biogeography-Based Optimization, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

Biogeography is the study of the geographical distribution of biological organisms. Mathematical equations that govern the distribution of organisms were first discovered and developed during the 1960s. The mindset of the engineer is that we can learn from nature. This motivates the application of biogeography to optimization problems. Just as the mathematics of biological genetics inspired the development of genetic algorithms (GAs), and the mathematics of biological neurons inspired the development of artificial neural networks, this paper considers the mathematics of biogeography as the basis for the development of a new field: biogeography-based optimization (BBO). We discuss natural biogeography and …


A Plasma Model Combined With An Improved Two-Temperature Equation For Ultrafast Laser Ablation Of Dielectrics, Lan Jiang, Hai-Lung Tsai Nov 2008

A Plasma Model Combined With An Improved Two-Temperature Equation For Ultrafast Laser Ablation Of Dielectrics, Lan Jiang, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

It remains a big challenge to theoretically predict the material removal mechanism in femtosecond laser ablation. To bypass this unresolved problem, many calculations of femtosecond laser ablation of nonmetals have been based on the free electron density distribution without the actual consideration of the phase change mechanism. However, this widely used key assumption needs further theoretical and experimental confirmation. by combining the plasma model and improved two-temperature model developed by the authors, this study focuses on investigating ablation threshold fluence, depth, and shape during femtosecond laser ablation of dielectrics through nonthermal processes (the Coulomb explosion and electrostatic ablation). The predicted …


Three-Dimensional Modeling Of The Plasma Arc In Arc Welding, Gu Xu, J. Hu, Hai-Lung Tsai Nov 2008

Three-Dimensional Modeling Of The Plasma Arc In Arc Welding, Gu Xu, J. Hu, Hai-Lung Tsai

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Most previous three-dimensional modeling on gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) focuses on the weld pool dynamics and assumes the two-dimensional axisymmetric Gaussian distributions for plasma arc pressure and heat flux. In this article, a three-dimensional plasma arc model is developed, and the distributions of velocity, pressure, temperature, current density, and magnetic field of the plasma arc are calculated by solving the conservation equations of mass, momentum, and energy, as well as part of the Maxwell's equations. This three-dimensional model can be used to study the nonaxisymmetric plasma arc caused by external perturbations such as …


Flightlines, Vol. 16, No. 1, Jeffrey A. Johnson Oct 2008

Flightlines, Vol. 16, No. 1, Jeffrey A. Johnson

Flightlines Newsletter

No abstract provided.


High Bandwidth Control Of Precision Motion Instrumentation, Douglas A. Bristow, Jingyan Dong, Andrew G. Alleyne, Srinivasa M. Salapaka, Placid M. Ferreira Oct 2008

High Bandwidth Control Of Precision Motion Instrumentation, Douglas A. Bristow, Jingyan Dong, Andrew G. Alleyne, Srinivasa M. Salapaka, Placid M. Ferreira

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This article presents a high-bandwidth control design suitable for precision motion instrumentation. Iterative learning control (ILC), a feedforward technique that uses previous iterations of the desired trajectory, is used to leverage the repetition that occurs in many tasks, such as raster scanning in microscopy. Two ILC designs are presented. The first design uses the motion system dynamic model to maximize bandwidth. The second design uses a time-varying bandwidth that is particularly useful for nonsmooth trajectories such as raster scanning. Both designs are applied to a multiaxis piezoelectric-actuated flexure system and evaluated on a nonsmooth trajectory. The ILC designs demonstrate significant …


Adaptive Control Of Freeze-Form Extrusion Fabrication Processes, Xiyue Zhao, Robert G. Landers, Ming-Chuan Leu Oct 2008

Adaptive Control Of Freeze-Form Extrusion Fabrication Processes, Xiyue Zhao, Robert G. Landers, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Freeze-form Extrusion Fabrication (FEF) is an additive manufacturing process that extrudes high solids loading aqueous ceramic pastes in a layer-by-layer fashion below the paste freezing temperature for component fabrication. Due to effects such as the air bubble release, agglomerate breakdown, change in paste properties during extrusion as a result of liquid phase migration, etc., the extrusion force is difficult to control. In this paper, an adaptive controller is proposed to regulate the extrusion force. Recursive Least Squares is used to estimate extrusion force model parameters during fabrication and a low-order control scheme capable of tracking general reference trajectories is designed …


Inter-Frequency Bias Estimation For The Gps Monitor Station Network, Donny Holaschutz, Robert H. Bishop, R. Benjamin Harris, Brian Tolman Sep 2008

Inter-Frequency Bias Estimation For The Gps Monitor Station Network, Donny Holaschutz, Robert H. Bishop, R. Benjamin Harris, Brian Tolman

Mechanical Engineering Faculty Research and Publications

The inter-frequency bias (IFB) is present in all dual frequency combinations of GPS pseudorange and carrier phase observables. It is caused by the path dependent signal delays in both the satellite and receiver. That delay can be directly measured for a space vehicle prior to launch, or for a ground based receiver prior to its being used in the field. However the bias is known to drift, and monitoring the delay estimate by direct measurement is time consuming for ground based receivers and impossible for deployed space vehicles. Hansen (2002) examined the observability of IFB through a global model of …


Aerodynamic Analysis Of A Generic Fighter With A Chine Fuselage/Delta Wing Configuration Using Delayed Detached-Eddy Simulation, Tiger L. Jeans, David R. Mcdaniel, Russell M. Cummings, William H. Mason Aug 2008

Aerodynamic Analysis Of A Generic Fighter With A Chine Fuselage/Delta Wing Configuration Using Delayed Detached-Eddy Simulation, Tiger L. Jeans, David R. Mcdaniel, Russell M. Cummings, William H. Mason

Aerospace Engineering

The Modular Transonic Vortex Investigation (MTVI) program at NASA Langley Research Center investigated the transonic characteristics of generic fighter configurations with chined fuselages and delta wings. Previous experiments show that the fuselage and leading edge vortex interactions are detrimental to the vehicle’s aerodynamic characteristics for angles of attack greater than 23º at low angles of sideslip. This is largely due to abrupt asymmetric vortex breakdown, which leads to pronounced pitch-up and significant nonlinearities in lateral stability that could result in roll departure. An improved understanding of the exact origins of this nonlinear behavior would improve future fighter design, and predictive …


An Evaluation Of Proposed Formula 1 Aerodynamic Regulations Changes Using Computational Fluid Dynamics, Robert L. Perry, David D. Marshall Aug 2008

An Evaluation Of Proposed Formula 1 Aerodynamic Regulations Changes Using Computational Fluid Dynamics, Robert L. Perry, David D. Marshall

Aerospace Engineering

This report evaluates the proposed FIA Formula 1 World Championship aerodynamics rules changes intended to increase on track passing for the 2009 season. Two full Formula 1 cars were modeled under close drafting conditions, both under the current regulations and the proposed 2009 regulations to determine whether or not the FIA's goals of reducing down force by 50% and improving sensitivity to leading car wakes would be met. Under the current regulations, a car following another at 2.4 car lengths loses approximately 17% of it down force compared to isolation. The new regulations were counter productive and ineffective, failing both …


Issues On Stability Of Adp Feedback Controllers For Dynamical Systems, S. N. Balakrishnan, Jie Ding, F. L. Lewis Aug 2008

Issues On Stability Of Adp Feedback Controllers For Dynamical Systems, S. N. Balakrishnan, Jie Ding, F. L. Lewis

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper traces the development of neural-network (NN)-based feedback controllers that are derived from the principle of adaptive/approximate dynamic programming (ADP) and discusses their closed-loop stability. Different versions of NN structures in the literature, which embed mathematical mappings related to solutions of the ADP-formulated problems called “adaptive critics” or “action-critic” networks, are discussed. Distinction between the two classes of ADP applications is pointed out. Furthermore, papers in “model-free” development and model-based neurocontrollers are reviewed in terms of their contributions to stability issues. Recent literature suggests that work in ADP-based feedback controllers with assured stability is growing in diverse forms.


Reinforcement Learning Based Dual-Control Methodology For Complex Nonlinear Discrete-Time Systems With Application To Spark Engine Egr Operation, Peter Shih, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier Aug 2008

Reinforcement Learning Based Dual-Control Methodology For Complex Nonlinear Discrete-Time Systems With Application To Spark Engine Egr Operation, Peter Shih, Brian C. Kaul, Jagannathan Sarangapani, J. A. Drallmeier

Electrical and Computer Engineering Faculty Research & Creative Works

A novel reinforcement-learning-based dual-control methodology adaptive neural network (NN) controller is developed to deliver a desired tracking performance for a class of complex feedback nonlinear discrete-time systems, which consists of a second-order nonlinear discrete-time system in nonstrict feedback form and an affine nonlinear discrete-time system, in the presence of bounded and unknown disturbances. For example, the exhaust gas recirculation (EGR) operation of a spark ignition (SI) engine is modeled by using such a complex nonlinear discrete-time system. A dual-controller approach is undertaken where primary adaptive critic NN controller is designed for the nonstrict feedback nonlinear discrete-time system whereas the secondary …


Book Review: Tourists In Space: A Practical Guide, T. D. Oswalt Aug 2008

Book Review: Tourists In Space: A Practical Guide, T. D. Oswalt

Publications

This document is Dr. Oswalt’s review of Tourists in Space : a Practical Guide by Erik Seedhouse. Springer/Praxis, 2008 314p, 9780387746432 $34.95


Raising The Dead, Nihad E. Daidzic Aug 2008

Raising The Dead, Nihad E. Daidzic

Aviation Department Publications

No abstract provided.


An Undergraduate Computational Aerodynamics Curriculum, Keith Bergeron, Russell M. Cummings, Capt Robert Decker, Maj Jacob Freeman, Capt Charlie Hoke, Jurgen Seidel, Scott A. Morton, David M. Mcdaniel Jul 2008

An Undergraduate Computational Aerodynamics Curriculum, Keith Bergeron, Russell M. Cummings, Capt Robert Decker, Maj Jacob Freeman, Capt Charlie Hoke, Jurgen Seidel, Scott A. Morton, David M. Mcdaniel

Aerospace Engineering

Modeling and Simulation (M&S) as part of the Aeronautical Engineering major at the United States Air Force Academy (USAFA) has grown from a one course introduction to an integrated and essential component for developing future aerospace leaders. This paper documents the progress the USAFA Department of Aeronautics (DFAN) has made since 2003 to teach cadets, through a 2-course sequence, how to gain an understanding of aerodynamic phenomena using computational methods made possible with Department of Defense (DoD) High Performance Computing Modernization Program (HPCMP) resources. The first course in of the sequence builds upon demonstrations, made in early core coursework, to …


Numerical Prediction And Wind Tunnel Experiment For A Pitching Unmanned Combat Air Vehicle, Russell M. Cummings, Scott A. Morton, Stefan G. Siegel Jul 2008

Numerical Prediction And Wind Tunnel Experiment For A Pitching Unmanned Combat Air Vehicle, Russell M. Cummings, Scott A. Morton, Stefan G. Siegel

Aerospace Engineering

The low-speed flowfield for a generic unmanned combat air vehicle (UCAV) is investigated both experimentally and numerically. A wind tunnel experiment was conducted with the Boeing 1301 UCAV at a variety of angles of attack up to 70 degrees, both statically and with various frequencies of pitch oscillation (0.5, 1.0, and 2.0 Hz). In addition, pitching was performed about three longitudinal locations on the configuration (the nose, 35% MAC, and the tail). Solutions to the unsteady, laminar, compressible Navier–Stokes equations were obtained on an unstructured mesh to match results from the static and dynamic experiments. The computational results are compared …


A New Contour Reconstruction Approach From Dexel Data In Virtual Sculpting, Kemal Yuksek, Weihan Zhang, Boryslaw Iwo Ridzalski, Ming-Chuan Leu Jul 2008

A New Contour Reconstruction Approach From Dexel Data In Virtual Sculpting, Kemal Yuksek, Weihan Zhang, Boryslaw Iwo Ridzalski, Ming-Chuan Leu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper presents a novel method of contour reconstruction from dexel data solving the shape anomalies for the complex geometry in virtual sculpting. Grouping and traversing processes are developed to find connectivity between dexels along every two adjacent rays. After traveling through all the rays on one slice, sub-boundaries are connected into full boundaries which are desired contours. The complexity of the new method has been investigated and determined as O(n). We also demonstrate the ability of the described method for viewing a sculpted model from different directions.


Gaussian Process Metamodeling Applied To A Circulation Control Wing, Scott Turner, Tyler Ball, David D. Marshall Jun 2008

Gaussian Process Metamodeling Applied To A Circulation Control Wing, Scott Turner, Tyler Ball, David D. Marshall

Aerospace Engineering

Metamodeling fluid systems is an efficient way to do complex analysis on multivariate problems and can allow for time savings in an optimization setting. Gaussian process metamodels provide a flexibility in modeling that can be extended to both experimental and deterministic experiments. This paper specifically addresses such models applied to computational fluid dynamics analysis of a D circulation control wing. The framework for a generalized approach is first overviewed and then applied to the analysis of the aerodnamics. The Gaussian process regression was essential for both simplifying the calculations required for balanced field length computation and for analysis of complex …


Formation Control Of Car-Like Mobile Robots: A Lyapunov Function Based Approach, S. A. Panimadai Ramaswamy, S. N. Balakrishnan Jun 2008

Formation Control Of Car-Like Mobile Robots: A Lyapunov Function Based Approach, S. A. Panimadai Ramaswamy, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In literature leader - follower strategy has been used extensively for formation control of car-like mobile robots with the control law being derived from the kinematics. This paper takes it a step further and a nonlinear control law is derived using Lyapunov analysis for formation control of car-like mobile robots using robot dynamics. Controller is split into two parts. The first part is the development of a velocity controller for the follower from the error kinematics (linear and angular). The second part involves the use of the dynamics of the robot in the development of a torque controller for both …


Design Of A Linear Time-Varying Cross-Coupled Iterative Learning Controller, K. L. Barton, Douglas A. Bristow, Andrew G. Alleyne Jun 2008

Design Of A Linear Time-Varying Cross-Coupled Iterative Learning Controller, K. L. Barton, Douglas A. Bristow, Andrew G. Alleyne

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In many manufacturing applications contour tracking is more important than individual axis tracking. Many control techniques, including iterative learning control (ILC), target individual axis error. Because individual axis error only indirectly relates to contour error, these approaches may not be very effective for contouring applications. Cross-coupled ILC (CCILC) is a variation on traditional ILC that targets the contour tracking directly. In contour trajectories with rapid changes, high frequency control is necessary in order to meet tracking requirements. This paper presents an improved CCILC that uses a linear time-varying (LTV) filter to provide high frequency control for short durations. The improved …


Optimal Neuro-Controller Synthesis For Variable-Time Impulse Driven Systems, Xiaohua Wang, S. N. Balakrishnan Jun 2008

Optimal Neuro-Controller Synthesis For Variable-Time Impulse Driven Systems, Xiaohua Wang, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper develops a systematic scheme to solve for the optimal controls of variable time impulsive systems. First, the optimality conditions for variable time impulse driven systems are derived using the calculus of variation. After wards, a neural network based adaptive critic method is proposed to numerically solve the two-point boundary value problems formulated based on the optimality conditions derived. Finally, two examples - one linear and one nonlinear - are presented to illustrate the conditions derived and to show the power of the neural network based adaptive critic method proposed.


Optimal Controller Synthesis Of Variable-Time Impulsive Problems Using Single Network Adaptive Critics, Xiaohua Wang, S. N. Balakrishnan Jun 2008

Optimal Controller Synthesis Of Variable-Time Impulsive Problems Using Single Network Adaptive Critics, Xiaohua Wang, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

This paper presents a systematic approach to solve for the optimal control of a variable-time impulsive system. First, optimality condition for a variable-time impulsive system is derived using the calculus of variations method. Next, a single network adaptive critic technique is proposed to numerically solve for the optimal control and the detailed algorithm is presented. Finally, two examples-one linear and one nonlinear-are solved applying the conditions derived and the algorithm proposed. Numerical results demonstrate the power of the neural network based adaptive critic method in solving this class of problems.


Weighting Matrix Design For Robust Monotonic Convergence In Norm Optimal Iterative Learning Control, Douglas A. Bristow Jun 2008

Weighting Matrix Design For Robust Monotonic Convergence In Norm Optimal Iterative Learning Control, Douglas A. Bristow

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this paper we examine the robustness of norm optimal ILC with quadratic cost criterion for discrete-time, linear time-invariant, single-input single-output systems. A bounded multiplicative uncertainty model is used to describe the uncertain system and a sufficient condition for robust monotonic convergence is developed. We find that, for sufficiently large uncertainty, the performance weighting can not be selected arbitrarily large, and thus overall performance is limited. To maximize available performance, a time-frequency design methodology is presented to shape the weighting matrix based on the initial tracking error. The design is applied to a nanopositioning system and simulation results are presented.


Frequency Domain Analysis And Design Of Iterative Learning Control For Systems With Stochastic Disturbances, Douglas A. Bristow Jun 2008

Frequency Domain Analysis And Design Of Iterative Learning Control For Systems With Stochastic Disturbances, Douglas A. Bristow

Mechanical and Aerospace Engineering Faculty Research & Creative Works

In this work we examine the performance of iterative learning control (ILC) for systems with non-repeating disturbances and random noise. Single-input, single- output linear time-invariant systems and iteration-invariant learning filters are considered. We find that a tradeoff exists between the convergence rate and converged error spectrum. Optimal filter designs, which are dependant on the disturbance and noise spectra, are developed. We also present simple design guidelines for the case when explicit models of disturbance and noise spectra are not available. A numerical design example is presented.


Adaptive Quaternion Control Of A Miniature Tailsitter Uav, Nathan B. Knoebel, Timothy W. Mclain Jun 2008

Adaptive Quaternion Control Of A Miniature Tailsitter Uav, Nathan B. Knoebel, Timothy W. Mclain

Faculty Publications

The miniature tailsitter is a unique aircraft with inherent advantages over typical unmanned aerial vehicles. With the capabilities of both hover and level flight, these small, portable systems can produce efficient maneuvers for enhanced surveillance and autonomy with little threat to surroundings and the system itself. Such vehicles create control challenges due to the two different flight regimes. These challenges are addressed with a computationally efficient adaptive quaternion control algorithm. A backstepping method for model cancellation and consistent tracking of reference model attitude dynamics is derived. This is used in conjunction with a regularized data-weighting recursive least-squares algorithm for the …


College Of Engineering Senior Design Competition Spring 2008, University Of Nevada, Las Vegas May 2008

College Of Engineering Senior Design Competition Spring 2008, University Of Nevada, Las Vegas

Fred and Harriet Cox Senior Design Competition Projects

Part of every UNLV engineering student’s academic experience, the senior design project stimulates engineering innovation and entrepreneurship. Each student in their senior year chooses, plans, designs, and prototypes a product in this required element of the curriculum. A capstone to the student’s educational career, the senior design project encourages the student to use everything learned in the engineering program to create a practical, real world solution to an engineering challenge.

The senior design competition helps to focus the senior students in increasing the quality and potential for commercial application for their design projects. Judges from local industry evaluate the projects …


Development Of A Low-Cost Fine Steering Mirror, Steven R. Wassom, Morgan Davidson May 2008

Development Of A Low-Cost Fine Steering Mirror, Steven R. Wassom, Morgan Davidson

Space Dynamics Laboratory Publications

The Space Dynamics Laboratory has used internal funds to develop a prototype low-cost two-axis fine steering mirror (FSM) for space-based and airborne applications. The FSM has a lightweight 75 mm-by- 150-mm high-reflectance mirror, high angular deflection capability for along-track ground motion compensation and cross-track pointing, and a 70-Hertz bandwidth for small amplitudes to help cancel unwanted jitter. It makes use of off-the-shelf components as much as possible. Key performance parameters are: Clear aperture, 75 mm; elevation angle, ±15 deg (mechanical); azimuth angle, ±60 deg (mechanical); slew rate, greater than 75 deg/sec; bandwidth, 70 Hz; steady-state average error, about 1 arcsec; …


Incorporation Of Evidences Into An Intelligent Computational Argumentation Network For A Web-Based Collaborative Engineering Design System, Xiaoqing Frank Liu, Ekta Khudkhudia, Ming-Chuan Leu May 2008

Incorporation Of Evidences Into An Intelligent Computational Argumentation Network For A Web-Based Collaborative Engineering Design System, Xiaoqing Frank Liu, Ekta Khudkhudia, Ming-Chuan Leu

Computer Science Faculty Research & Creative Works

Conflicts among the stakeholders are unavoidable in the process of collaborative engineering design. Resolution of these conflicts is a challenging task. In our previous research, a web based intelligent collaborative system was developed which provides decision-making support, using computational argumentation techniques. Enhancements were done to this system to incorporate the priorities of the stakeholders and to detect arguments that self conflict. As an effort to make this system more effective and more objective in the process of decision making, we develop a method to assess the effect of evidences in the argumentation network, using Dempster-Shafer theory of evidence and fuzzy …


Flightlines, Vol. 15, No. 2, Jeffrey A. Johnson Apr 2008

Flightlines, Vol. 15, No. 2, Jeffrey A. Johnson

Flightlines Newsletter

No abstract provided.