Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 23 of 23

Full-Text Articles in Engineering

Carbon-Based Artificial Sei Layers For Aqueous Lithium-Ion Battery Anodes, Usha Subramanya, Charleston Chua, Victor Gin He Leong, Ryan Robinson, Gwenlyn Cruz Cabiltes, Prakirti Singh, Bonnie Yip, Anuja Bokare, Folarin Erogbogbo, Dahyun Oh Jan 2020

Carbon-Based Artificial Sei Layers For Aqueous Lithium-Ion Battery Anodes, Usha Subramanya, Charleston Chua, Victor Gin He Leong, Ryan Robinson, Gwenlyn Cruz Cabiltes, Prakirti Singh, Bonnie Yip, Anuja Bokare, Folarin Erogbogbo, Dahyun Oh

Faculty Publications

Replacing flammable organic electrolytes with aqueous electrolytes in lithium-ion batteries (LIB) can greatly enhance the safety of next-generation energy storage systems. With the extended electrochemical stability window of electrolytes, 'water-in-salt' (WIS) electrolytes containing LIB presented significant performance improvements. However, the solubility limits of lithium salts in water restrain the extent of kinetic protection offered by the high salt concentration. Here, we report design strategies of anode structure to improve the cycle life of LIB with WIS electrolytes. We introduced partially graphitic protective carbon layers on anode particles using a versatile coating method. This protective layer not only improved charge transfer …


An Efficient Electrochemical–Thermal Model For A Lithium-Ion Cell By Using The Proper Orthogonal Decomposition Method, Long Cai, Ralph E. White Jan 2010

An Efficient Electrochemical–Thermal Model For A Lithium-Ion Cell By Using The Proper Orthogonal Decomposition Method, Long Cai, Ralph E. White

Faculty Publications

The proper orthogonal decomposition method was applied to develop an efficient, reduced order electrochemical–thermal model for a lithium-ion cell. This model was validated for discharge simulations over a wide range of C rates and various cooling conditions of the cell. The reduced order model agrees well with the COMSOL model, a commercial finite element method solver, and requires times less computation time than the COMSOL model. The model predictions indicate that the discharge time or percent of capacity removed from the cell at an end of discharge voltage of 3.0 V depends on the rate of the discharge and heat …


La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen Mar 2009

La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen

Faculty Publications

Porous yttria-stabilized bismuth oxides (YSB) were investigated as the backbones for (LSM) infiltrated cathodes in intermediate-temperature solid oxide fuel cells. The cathodes were evaluated using anode-supported single cells with scandia-stabilized zirconia as the electrolytes. With humidified as the fuel, the cell showed peak power density of 0.33, 0.52, and at 650, 700, and , respectively. At , the cell polarization resistance was only , of the lowest value previously reported, indicating that YSB is a promising backbone for the LSM infiltrated cathode.


Analytical Expression For The Impedance Response For A Lithium-Ion Cell, Godfrey Sikha, Ralph E. White Jan 2008

Analytical Expression For The Impedance Response For A Lithium-Ion Cell, Godfrey Sikha, Ralph E. White

Faculty Publications

An analytical expression to predict the impedance response of a dual insertion electrode cell (insertion electrodes separated by an ionically conducting membrane) is presented. The expression accounts for the reaction kinetics and double-layer adsorption processes at the electrode-electrolyte interface, transport of electroactive species in the electrolyte phase, and insertion of species in the solid phase of the insertion electrodes. The accuracy of the analytical expression is validated by comparing the impedance response predicted by the expression to the corresponding numerical solution. The analytical expression is used to predict the impedance response of a lithium-ion cell consisting of a porous LiCoO …


Thermal Model For A Li-Ion Cell, Karthikeyan Kumaresan, Godfrey Sikha, Ralph E. White Jan 2008

Thermal Model For A Li-Ion Cell, Karthikeyan Kumaresan, Godfrey Sikha, Ralph E. White

Faculty Publications

A thermal model for a lithium-ion cell is presented and used to predict discharge performance at different operating temperatures. The results from the simulations are compared to experimental data obtained from lithium-ion pouch cells. The model includes a set of parameters (and their concentration and temperature dependencies) that has been obtained for a lithium-ion cell composed of a mesocarbon microbead anode, LiCoO2 cathode in 1 M LiPF6 salt, in a mixture of ethylene carbonate, propylene carbonate, ethyl-methyl carbonate, and diethyl carbonate electrolyte. The parameter set was obtained by comparing the model predictions to the experimental discharge profiles obtained …


A Mathematical Model For A Lithium–Sulfur Cell, Karthikeyan Kumaresan, Yuriy Mikhaylik, Ralph E. White Jan 2008

A Mathematical Model For A Lithium–Sulfur Cell, Karthikeyan Kumaresan, Yuriy Mikhaylik, Ralph E. White

Faculty Publications

A mathematical model is presented for a complete lithium–sulfur cell. The model includes various electrochemical and chemical (precipitation) reactions, multicomponent transport phenomena in the electrolyte, and the charge transfer within and between solid and liquid phases. A change in the porosity of the porous cathode and separator due to precipitation reactions is also included in the model. The model is used to explain the physical reasons for the two-stage discharge profiles that are typically obtained for lithium–sulfur cells.


Electrode Performance Test On Single Ceramic Fuel Cells Using As Electrolyte Sr‐ And Mg‐Doped Lagao3, Kevin Huang, Man Feng, John B. Goodenough, Christopher Milliken Oct 1997

Electrode Performance Test On Single Ceramic Fuel Cells Using As Electrolyte Sr‐ And Mg‐Doped Lagao3, Kevin Huang, Man Feng, John B. Goodenough, Christopher Milliken

Faculty Publications

The electrode performance of a single solid oxide fuel cell was evaluated using a 500 μm thick La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) as the electrolyte membrane. Comparison of La0.6Sr0.4CoO3-δ (LSCo) and La0.9Sr0.1MnO3 (LSM) as cathodes showed LSCo gave an exchange current density two orders of magnitude higher than that of LSM. Comparison of CeO2/Ni and LSGM/Ni as anodes showed a degradation of the latter with time, and studies of the anode‐electrolyte interface and the reactivity of NiO and LSGM suggest better anode …


Electrowinning Of Nonnoble Metals With Simultaneous Hydrogen Evolution At Flow-Through Porous Electrodes Iii. Time Effects, Mahmoud M. Saleh, John W Weidner, Bahgat E. El-Anadouli, Badr G. Ateya Jan 1997

Electrowinning Of Nonnoble Metals With Simultaneous Hydrogen Evolution At Flow-Through Porous Electrodes Iii. Time Effects, Mahmoud M. Saleh, John W Weidner, Bahgat E. El-Anadouli, Badr G. Ateya

Faculty Publications

The electrowinning of zinc from a recirculating alkaline zincate solution at a flow-through porous electrode was investigated. Experimental results were obtained to test the predictions of a mathematical model. The effects of electrolyte flow rate, cell current, and electrode thickness on the concentration-time relations and coulombic efficiency-time relations were studied. The experimental results show that the highest recovery rate was obtained at both high flow rates and cell currents. There is, however, a practical limit for increasing both the cell current and the electrolyte flow rate. Reasonable agreement between the model predictions and experimental results was obtained. A case study …


Governing Equations For Transport In Porous Electrodes, Pauline De Vidts, Ralph E. White Jan 1997

Governing Equations For Transport In Porous Electrodes, Pauline De Vidts, Ralph E. White

Faculty Publications

No abstract provided.


Galvanostatic Pulse And Pulse Reverse Plating Of Zinc–Nickel Alloys From Sulfate Electrolytes On A Rotating Disc Electrode, Branko Popov, M. Ramasubramanian, S. N. Popova, Ralph E. White, Ken-Ming Yin Jan 1996

Galvanostatic Pulse And Pulse Reverse Plating Of Zinc–Nickel Alloys From Sulfate Electrolytes On A Rotating Disc Electrode, Branko Popov, M. Ramasubramanian, S. N. Popova, Ralph E. White, Ken-Ming Yin

Faculty Publications

Galvanostatic pulse and pulse reverse techniques have been used to study the plating of zinc–nickel alloys in the presence of nonyl phenyl polyethylene oxide. The effects of average current density, rotation speed of disc electrode and the presence of nonyl phenyl polyethylene oxide in the electrolyte on deposition of zinc–nickel alloys were evaluated. Zinc–nickel plating bath solution chemistry was studied by determining the equilibrium concentrations at various pH levels. It was found that the alloy composition was determined by solution equilibria, mass transfer of the electroactive species within the diffusion layer and by the surface coverage of nonyl phenyl polyethylene …


Galvanostatic Pulse And Pulse Reverse Plating Of Nickel-Iron Alloys From Electrolytes Containing Organic Compounds On A Rotating Disk Electrode, Branko N. Popov, Ken-Ming Yin, Ralph E. White Jan 1993

Galvanostatic Pulse And Pulse Reverse Plating Of Nickel-Iron Alloys From Electrolytes Containing Organic Compounds On A Rotating Disk Electrode, Branko N. Popov, Ken-Ming Yin, Ralph E. White

Faculty Publications

Linear sweep voltammetry, galvanostatic pulse, and pulse reverse techniques were used to study the plating of nickel-iron alloys in the presence of organic additives. The effects of pulse current densities, ip, reverse current densities, ir, rotation speed of disk electrode, and the presence of organic additives on deposition of nickel-iron alloys are evaluated. The observed phenomena can be explained by the concentration depletion of reactants (or products), and the surface coverage of the additives on the electrode. A new formulation of the plating bath is defined.


A Mathematical Model Of A Sealed Nickel-Cadmium Battery, Deyuan Fan, Ralph E. White Jan 1991

A Mathematical Model Of A Sealed Nickel-Cadmium Battery, Deyuan Fan, Ralph E. White

Faculty Publications

A mathematical model for the charge and discharge of a sealed nickel-cadmium (Ni-Cd) battery is presented. The model is used to study the effect of transport properties of the electrolyte and kinetic parameters of the electrode reactions on the cell performance during the charge and discharge period. The model can also be used to demonstrate the changes of cell performance during cycling. Some comparisons between model predictions and experimental results indicate that the model predictions appear to fit the experimental data well. Sensitivity analyses illustrate that the sealed nickel-cadmium battery operates under activation control. It is also shown theoretically that …


The Effects Of Separator Design On The Discharge Performance Of A Starved Lead-Acid Cell, T. V. Nguyen, Ralph E. White, Hiram Gu Jan 1990

The Effects Of Separator Design On The Discharge Performance Of A Starved Lead-Acid Cell, T. V. Nguyen, Ralph E. White, Hiram Gu

Faculty Publications

A mathematical model of a starved lead-acid cell has been developed to study the dynamic behavior of the cell during discharge. Concentrated binary electrolyte theory and a volume-averaging technique were used to model the transport of electrolyte. The model can be used to predict cell voltage and profile of: acid concentration, overpotential, porosity, reaction rate, and electrode capacity, as functions of time. The effects of separator thickness and its porosity were examined with respect to cold-cranking amperage and reserve capacity of the battery. The separator was found to be a significant factor governing performance.


Electrochemical Behavior Of Graphite And Ni-Cr Electrodes In Sodium Polysulfide In The Absence And Presence Of Hydrogen Sulfide, Z. Mao, Ralph E. White, B. Dandapani, A. Anani, S. Srinivasan, A. J. Appleby Jan 1990

Electrochemical Behavior Of Graphite And Ni-Cr Electrodes In Sodium Polysulfide In The Absence And Presence Of Hydrogen Sulfide, Z. Mao, Ralph E. White, B. Dandapani, A. Anani, S. Srinivasan, A. J. Appleby

Faculty Publications

The electrochemical behavior of graphite and Ni-Cr electrodes in sodium tetrasulfide melt has been investigated using voltammetric, chronoamperometric, and chronopotentiometric techniques in the presence and absence of hydrogen sulfide. Two continuous phases, namely, Na2S2 and Na2S, are apparently formed at different potentials during the cathodic polarization. The blocking effect by these layers was much less significant on the Ni-Cr electrode than on graphite. The presence of H2S did not appear to influence the electrode reactions, but it significantly reduced the rate of formation of the continuous phases (Na2S2 or Na …


Electrochemical Production Of Hydrogen And Sulfur By Low-Temperature Decomposition Of Hydrogen Sulfide In An Aqueous Alkaline Solution, A. A. Anani, Z. Mao, Ralph E. White, S. Srinivasan, A. J. Appleby Jan 1990

Electrochemical Production Of Hydrogen And Sulfur By Low-Temperature Decomposition Of Hydrogen Sulfide In An Aqueous Alkaline Solution, A. A. Anani, Z. Mao, Ralph E. White, S. Srinivasan, A. J. Appleby

Faculty Publications

Electrolysis of hydrogen sulfide to its constituents in a solution containing equimolar concentrations of NaOH and NaHS has been carried out at 80°C. In a double-compartment cell employing Nafion membrane as a separator, both crystalline elemental sulfur and high-purity hydrogen have been produced at high current efficiencies. Only minimal, if any, passivation of the anode by sulfur product was observed. According to solution composition, electrolysis could result in gas evolution at the anode, passivation of the anode by sulfur deposition, or oxidation of sulfide (S2–) or polysulfide (S) to sulfur oxyanions. However, in an optimized solution, electrolysis gave …


A Mathematical Model Of A Lithium/Thionyl Chloride Primary Cell, T. I. Evans, T. V. Nguyen, Ralph E. White Jan 1989

A Mathematical Model Of A Lithium/Thionyl Chloride Primary Cell, T. I. Evans, T. V. Nguyen, Ralph E. White

Faculty Publications

A one-dimensional mathematical model for the lithium/thionyl chloride primary cell has been developed to investigate methods of improving its performance and safety. The model includes many of the components of a typical lithium/thionyl chloride cell such as the porous lithium chloride film which forms on the lithium anode surface. The governing equations are formulated from fundamental conservation laws using porous electrode theory and concentrated solution theory. The model is used to predict one-dimensional, time dependent profiles of concentration, porosity, current, and potentialas well as cell temperature and voltage. When a certain discharge rate is required, the model can be used …


A Two-Dimensional Mathematical Model Of A Porous Lead Dioxide Electrode In A Lead-Acid Cell, E. C. Dimpault-Darcy, T. V. Nguyen, Ralph E. White Jan 1988

A Two-Dimensional Mathematical Model Of A Porous Lead Dioxide Electrode In A Lead-Acid Cell, E. C. Dimpault-Darcy, T. V. Nguyen, Ralph E. White

Faculty Publications

A two-dimensional mathematical model is presented for a lead dioxide electrode in a lead-acid cell. It is used to simulate the time dependent behavior of the electrode during discharge. The model contains six dependent variables: the concentration of the acid electrolyte, the porosity, the electrical potentials of the solid and solution phases, and the two directional components of the current density in the electrolyte. The effect of the electrode grid was included by varying the conductivity of the solid. Parameters such as electrode conductivity, electrode dimensions, and temperature are investigated to understand their effects on electrode discharge performance.


Analysis Of Electrokinetic Data By Parameter Estimation And Model Discrimination Techniques, Prosper K. Adanuvor, Ralph E. White Jan 1988

Analysis Of Electrokinetic Data By Parameter Estimation And Model Discrimination Techniques, Prosper K. Adanuvor, Ralph E. White

Faculty Publications

An alternative approach to classical methods of electrochemical data analysis is presented. This alternative method is based on nonlinear parameter estimation and model discrimination techniques. The method is used to obtain the relevant kinetic and transport parameters and to elucidate the kinetic mechanism of O2 reduction at carbon and silver electrodes in alkaline electrolytes.


Oxygen Reduction On Silver In 6.5 Molar Caustic Soda Solution, Prosper K. Adanuvor, Ralph E. White Jan 1988

Oxygen Reduction On Silver In 6.5 Molar Caustic Soda Solution, Prosper K. Adanuvor, Ralph E. White

Faculty Publications

No abstract provided.


Oxygen Reduction On Silver In 6.5m Caustic Soda Solution, Prosper K. Adanuvor, Ralph E. White Jan 1988

Oxygen Reduction On Silver In 6.5m Caustic Soda Solution, Prosper K. Adanuvor, Ralph E. White

Faculty Publications

The cathodic reduction of oxygen in 6.5M membrane-grade caustic soda solution has been studied experimentally at a silver rotating disk electrode at 25°C. The results can be approximated by the parallel mechanism for oxygen reduction with catalytic decomposition of peroxide. Further analysis of this mechanism indicates that the sequential process with catalytic decomposition of peroxide predominates over the direct 4e process. Direct application of the sequential mechanism to the data indicates that the latter mechanism with catalytic decomposition of peroxide much more accurately reflects the experimental results. The relevant kinetic parameters are calculated on the basis of …


Simple Models For Diaphragm-Type Chlorine/Caustic Cells Ii. Effect Of Acidic Anolyte On Steady-State Caustic Yield, John Van Zee, Ralph E. White Jan 1986

Simple Models For Diaphragm-Type Chlorine/Caustic Cells Ii. Effect Of Acidic Anolyte On Steady-State Caustic Yield, John Van Zee, Ralph E. White

Faculty Publications

A simple steady-state model of a diaphragm-type chlorine/caustic cell in which the diaphragm is divided into two regions by a homogeneous acid-base reaction is presented. The location of the reaction affects significantly the caustic yield and effluent concentration. The model is used to predict the location of this reaction as a function of the operating variables, the physical constants, and three measurable properties of the diaphragm. These measurable properties are the MacMullin number or resistivity ratio of electrolyte-filled diaphragm relative to the electrolyte, the Darcy's law diaphragmpermeability, and the diaphragm thickness. The model is used to predict a maximum in …


A Mathematical Model For A Parallel Plate Electrochemical Reactor, Cstr, And Associated Recirculation System, T V. Nguyen, C W. Walton, Ralph E. White Jan 1986

A Mathematical Model For A Parallel Plate Electrochemical Reactor, Cstr, And Associated Recirculation System, T V. Nguyen, C W. Walton, Ralph E. White

Faculty Publications

A mathematical model is presented for a system comprised of a parallel plate electrochemical reactor (PPER) and a continuous, stirred-tank reactor (CSTR) under both total and partial recycle. The model is used to predict the time dependent behavior of the electrowinning of copper from an aqueous, hydrochloric acid solution. The model includes many important aspects of a PPER/CSTR system which have been neglected previously. These aspects are the kinetics of electrode reactions, the electroneutrality condition, three mass transfer processes for ionic species in the electrolyte (diffusion, ionic migration, and convection) and the electrode gap in the PPER, and the inclusion …


Using Parameter Estimation Techniques With A Simple Model Of A Diaphragm-Type Electrolyzer To Predict The Electrical Energy Cost For Naoh Production, John Van Zee, Ralph E. White Jan 1985

Using Parameter Estimation Techniques With A Simple Model Of A Diaphragm-Type Electrolyzer To Predict The Electrical Energy Cost For Naoh Production, John Van Zee, Ralph E. White

Faculty Publications

Predictions of the electrical energy cost for NaOH production are determined as a function of the independent operating variables and diaphragm characterizing properties. The predictions are based on data from a statistically designed experiment, a simple model of a diaphragm-type electrolyzer, a simple model of the cell voltage losses, and parameter estimation techniques. The data were obtained over a sufficiently large range of operating conditions so that the resulting design equation may be industrially useful. The simple model of the diaphragm is based on the mass transport of the hydroxyl ion, a linear potential gradient, and is presented in terms …