Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Australian Institute for Innovative Materials - Papers

Hydrogen

Articles 1 - 20 of 20

Full-Text Articles in Engineering

Designed Conducting Polymer Composites That Facilitate Long-Lived, Light-Driven Oxygen And Hydrogen Evolution From Water In A Photoelectrochemical Concentration Cell (Pecc), Mohammed Alsultan, Khalid Zainulabdeen, Pawel W. Wagner, Gerhard F. Swiegers, Holly Warren Jan 2019

Designed Conducting Polymer Composites That Facilitate Long-Lived, Light-Driven Oxygen And Hydrogen Evolution From Water In A Photoelectrochemical Concentration Cell (Pecc), Mohammed Alsultan, Khalid Zainulabdeen, Pawel W. Wagner, Gerhard F. Swiegers, Holly Warren

Australian Institute for Innovative Materials - Papers

Light-driven water-splitting to generate hydrogen and oxygen from water is typically carried out in an electrochemical cell with an external voltage greater than 1.23 V applied between the electrodes. In this work, we examined the use of a concentration/chemical bias as a means of facilitating water-splitting under light illumination without the need for such an externally applied voltage. Such a concentration bias was created by employing a pH differential in the liquid electrolytes within the O2-generating anode half-cell and the H2-generating cathode half-cell. A novel, stretchable, highly ion-conductive polyacrylamide CsCl hydrogel was developed to connect the two half-cells. The key …


Electrocatalytically Inactive Sns2 Promotes Water Adsorption/Dissociation On Molybdenum Dichalcogenides For Accelerated Alkaline Hydrogen Evolution, Yaping Chen, Xingyong Wang, Mengmeng Lao, Kun Rui, Xiaobo Zheng, Haibo Yu, Jing Ma, Shi Xue Dou, Wenping Sun Jan 2019

Electrocatalytically Inactive Sns2 Promotes Water Adsorption/Dissociation On Molybdenum Dichalcogenides For Accelerated Alkaline Hydrogen Evolution, Yaping Chen, Xingyong Wang, Mengmeng Lao, Kun Rui, Xiaobo Zheng, Haibo Yu, Jing Ma, Shi Xue Dou, Wenping Sun

Australian Institute for Innovative Materials - Papers

Molybdenum dichalcogenides, in particular, MoS2 and MoSe2, are very promising nonprecious metal-based electrocatalysts for hydrogen evolution reaction (HER) in acidic media. They exhibit inferior alkaline HER activity, however, due to the sluggish water dissociation process. Here, we design and synthesize new molybdenum dichalcogenide-based heterostructures with the basal planes decorated with SnS2 quantum dots towards enhanced alkaline HER activity. The electrochemical results reveal that the alkaline hydrogen evolution kinetics of molybdenum dichalcogenides is substantially accelerated after incorporation of SnS2 quantum dots. The optimal MoSe2/SnS2 heterostructure delivers a much lower overpotential of 285 mV than MoSe2 (367 mV) to reach a current …


Effect Of Storage Environment On Hydrogen Generation By The Reaction Of Al With Water, Yin-Qiang Wang, Wei-Zhuo Gai, Xia-Yu Zhang, Hong-Yi Pan, Zhenxiang Cheng, Pingguang Xu, Zhen-Yan Deng Jan 2017

Effect Of Storage Environment On Hydrogen Generation By The Reaction Of Al With Water, Yin-Qiang Wang, Wei-Zhuo Gai, Xia-Yu Zhang, Hong-Yi Pan, Zhenxiang Cheng, Pingguang Xu, Zhen-Yan Deng

Australian Institute for Innovative Materials - Papers

Al powder was stored in saturated water vapor, oxygen, nitrogen and drying air separately for a time period of up to six months, the degradation behavior of Al activity was characterized by the reaction of Al with water. It was found that water vapor decreased the induction time for the beginning of Al-water reaction and reduced the total hydrogen generation per unit weight of Al, while oxygen increased the induction time and retarded the Al-water reaction. In contrast, the effect of nitrogen and drying air on Al activity was weak. The mechanism analyses indicated that water vapor promoted the hydration …


Oxygen-Free Layer-By-Layer Assembly Of Lithiated Composites On Graphene For Advanced Hydrogen Storage, Guanglin Xia, Yingbin Tan, Xiaowei Chen, Fang Fang, Dalin Sun, Xingguo Li, Zaiping Guo, Xuebin Yu Jan 2016

Oxygen-Free Layer-By-Layer Assembly Of Lithiated Composites On Graphene For Advanced Hydrogen Storage, Guanglin Xia, Yingbin Tan, Xiaowei Chen, Fang Fang, Dalin Sun, Xingguo Li, Zaiping Guo, Xuebin Yu

Australian Institute for Innovative Materials - Papers

A facile hydrogenation-induced self-assembly strategy to synthesize lithium hydride (LiH) nanosheets with a thickness of 2 nm that are uniformly distributed on graphene is reported and designed. Taking advantage of LiH nanosheets with high reactivity and a homogeneous distribution on graphene support as a nanoreactor, the confined chemical synthesis of oxygen-free lithiated composites is effectively and efficiently realized.


Manipulating Coupling State And Magnetism Of Mn-Doped Zno Nanocrystals By Changing The Coordination Environment Of Mn Via Hydrogen Annealing, Yan Cheng, W Li, Weichang Hao, Huaizhe Xu, Zhongfei Xu, Li Rong Zheng, Jing Zhang, S X. Dou, Tianmin Wang Jan 2016

Manipulating Coupling State And Magnetism Of Mn-Doped Zno Nanocrystals By Changing The Coordination Environment Of Mn Via Hydrogen Annealing, Yan Cheng, W Li, Weichang Hao, Huaizhe Xu, Zhongfei Xu, Li Rong Zheng, Jing Zhang, S X. Dou, Tianmin Wang

Australian Institute for Innovative Materials - Papers

Mn-doped ZnO nanocrystals are synthesized by a wet chemical route and treated in H2/Ar atmosphere with different H2/Ar ratios. It is found that hydrogen annealing could change the coordination environment of Mn in ZnO lattice and manipulate the magnetic properties of Mn-doped ZnO. Mn ions initially enter into interstitial sites and a Mn3+O6 octahedral coordination is produced in the prepared Mn-doped ZnO sample, in which the nearest neighbor Mn3+ and O2 ions could form a Mn3+-O2--Mn3+ complex. After H2 annealing, interstitial Mn ions can substitute for Zn to generate the Mn2+O4 tetrahedral coordination in the nanocrystals, in which neighboring Mn2+ …


3d Binder-Free Mose2 Nanosheets/Carbon Cloth Electrodes For Efficient And Stable Hydrogen Evolution Prepared By Simple Electrophoresis Deposition Strategy, Yundan Liu, Long Ren, Zhen Zhang, Xiang Qi, Hongxing Li, Jianxin Zhong Jan 2016

3d Binder-Free Mose2 Nanosheets/Carbon Cloth Electrodes For Efficient And Stable Hydrogen Evolution Prepared By Simple Electrophoresis Deposition Strategy, Yundan Liu, Long Ren, Zhen Zhang, Xiang Qi, Hongxing Li, Jianxin Zhong

Australian Institute for Innovative Materials - Papers

We successfully developed a simple electrophoretic deposition (EPD) method to decorate the MoSe2 nanosheets on the carbon fiber surface of carbon cloth (MoSe2/CC). With this process, MoSe2 nanosheets can be uniformly and tightly deposited on this flexible conductor to form a 3D binder-free electrode for hydrogen evolution reaction (HER). The film thickness can also be controlled by the EPD time. Directly used as binder-free electrodes for hydrogen evolution reaction, the as-prepared 3D MoSe2/CC samples exhibit excellent catalytic activity in an acidic electrolyte (21 mA/cm2 at an over-potential of 250 mV). Variation of MoSe2 nanosheets film thickness in the electrodes could …


Graphene-Wrapped Reversible Reaction For Advanced Hydrogen Storage, Guanglin Xia, Yingbin Tan, Feilong Wu, Fang Fang, Dalin Sun, Zaiping Guo, Zhenguo Huang, Xuebin Yu Jan 2016

Graphene-Wrapped Reversible Reaction For Advanced Hydrogen Storage, Guanglin Xia, Yingbin Tan, Feilong Wu, Fang Fang, Dalin Sun, Zaiping Guo, Zhenguo Huang, Xuebin Yu

Australian Institute for Innovative Materials - Papers

Here, we report the fabrication of a graphene-wrapped nanostructured reactive hydride composite, i.e., 2LiBH4-MgH2, made by adopting graphene-supported MgH2 nanoparticles (NPs) as the nanoreactor and heterogeneous nucleation sites. The porous structure, uniform distribution of MgH2 NPs, and the steric confinement by flexible graphene induced a homogeneous distribution of 2LiBH4-MgH2 nanocomposite on graphene with extremely high loading capacity (80 wt%) and energy density. The well-defined structural features, including even distribution, uniform particle size, excellent thermal stability, and robust architecture endow this composite with significant improvements in its hydrogen storage performance. For instance, at a temperature as low as 350 °C, a …


Guanidinium Octahydrotriborate: An Ionic Liquid With High Hydrogen Storage Capacity, Weidong Chen, Zhenguo Huang, Guotao Wu, Teng He, Zhao Li, Juner Chen, Zaiping Guo, Hua-Kun Liu, Ping Chen Jan 2015

Guanidinium Octahydrotriborate: An Ionic Liquid With High Hydrogen Storage Capacity, Weidong Chen, Zhenguo Huang, Guotao Wu, Teng He, Zhao Li, Juner Chen, Zaiping Guo, Hua-Kun Liu, Ping Chen

Australian Institute for Innovative Materials - Papers

For chemical hydrogen storage, capacity is one key criterion that has spurred intense efforts to investigate compounds with high hydrogen content. The guanidinium cation and the octahydrotriborate anion possess 6 H+ and 8 H-, respectively. The combination of these two ions yields guanidinium octahydrotriborate with 13.8 wt% hydrogen. This paper presents its facile synthesis, as confirmed by 11B and 1H nuclear magnetic resonance spectroscopy. The results show that guanidinium octahydrotriborate is an ionic liquid with a melting point below -10°C, which makes it a possible injectable/pumpable hydrogen carrier. It decomposes selectively to hydrogen, in stark …


Hierarchical Porous Li 2 Mg(Nh)2@C Nanowires With Long Cycle Life Towards Stable Hydrogen Storage, Guanglin Xia, Yingbin Tan, Dan Li, Zaiping Guo, Hua-Kun Liu, Zongwen Liu, Xuebin Yu Jan 2014

Hierarchical Porous Li 2 Mg(Nh)2@C Nanowires With Long Cycle Life Towards Stable Hydrogen Storage, Guanglin Xia, Yingbin Tan, Dan Li, Zaiping Guo, Hua-Kun Liu, Zongwen Liu, Xuebin Yu

Australian Institute for Innovative Materials - Papers

The hierarchical porous Li2Mg(NH)2@C nanowires full of micropores, mesopores, and macropores are successfully fabricated via a single-nozzle electrospinning technique combined with in-situ reaction between the precursors, i.e., MgCl2 and LiN3, under physical restriction upon thermal annealing. The explosive decomposition of LiN3 well dispersed in the electrospun nanowires during carbothermal treatment induces a highly porous structure, which provides a favourable way for H2 delivering in and out of Li2Mg(NH)2 nanoparticles simultaneously realized by the space-confinement of the porous carbon coating. As a result, the thus-fabricated Li2Mg(NH)2 …


An Overview - Functional Nanomaterials For Lithium Rechargeable Batteries, Supercapacitors, Hydrogen Storage, And Fuel Cells, Hua-Kun Liu Jan 2013

An Overview - Functional Nanomaterials For Lithium Rechargeable Batteries, Supercapacitors, Hydrogen Storage, And Fuel Cells, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on …


Unidirectional Suppression Of Hydrogen Oxidation On Oxidized Platinum Clusters, Yu Li, Jun Xing, Zong Chen, Zhen Li, Feng Tian, Li Zheng, Hai Wang, P Hu, Huijun Zhao, Huagui Yang Jan 2013

Unidirectional Suppression Of Hydrogen Oxidation On Oxidized Platinum Clusters, Yu Li, Jun Xing, Zong Chen, Zhen Li, Feng Tian, Li Zheng, Hai Wang, P Hu, Huijun Zhao, Huagui Yang

Australian Institute for Innovative Materials - Papers

Solar-driven water splitting to produce hydrogen may be an ideal solution for global energy and environment issues. Among the various photocatalytic systems, platinum has been widely used to co-catalyse the reduction of protons in water for hydrogen evolution. However, the undesirable hydrogen oxidation reaction can also be readily catalysed by metallic platinum, which limits the solar energy conversion efficiency in artificial photosynthesis. Here we report that the unidirectional suppression of hydrogen oxidation in photocatalytic water splitting can be fulfilled by controlling the valence state of platinum; this platinum-based cocatalyst in a higher oxidation state can act as an efficient hydrogen …


Boron-Nitrogen-Hydrogen (Bnh) Compounds: Recent Developments In Hydrogen Storage, Applications In Hydrogenation And Catalysis, And New Syntheses, Zhenguo Huang, Tom Autrey Jan 2012

Boron-Nitrogen-Hydrogen (Bnh) Compounds: Recent Developments In Hydrogen Storage, Applications In Hydrogenation And Catalysis, And New Syntheses, Zhenguo Huang, Tom Autrey

Australian Institute for Innovative Materials - Papers

The strong efforts devoted to the exploration of BNH compounds for hydrogen storage have led to impressive advances in the field of boron chemistry. This review summarizes progress in this field from three aspects. It starts with the most recent developments in using BNH compounds for hydrogen storage, covering NH3BH3, B3H8- containing compounds, and CBN compounds. The following section then highlights interesting applications of BNH compounds in hydrogenation and catalysis. The last part is focused on breakthroughs in the syntheses and discovery of new BNH organic analogues. The role of N-Hδ+ …


Investigation Of The Hydrogen Storage Mechanism Of Expanded Graphite By Measuring Electrical Resistance Changes, Ji Sun Im, Seungsoon Jang, Youngseak Lee Jan 2012

Investigation Of The Hydrogen Storage Mechanism Of Expanded Graphite By Measuring Electrical Resistance Changes, Ji Sun Im, Seungsoon Jang, Youngseak Lee

Australian Institute for Innovative Materials - Papers

The hydrogen storage mechanism of graphite was studied by measuring the electrical resistance change. Graphite was expanded and activated to allow for an easy hydrogen molecule approach and to enlarge the adsorption sites. A vanadium catalyst was simultaneously introduced on the graphite during the activation process. The hydrogen storage increased due to the effects of expansion, activation, and the catalyst. In addition, the electrical resistance of the prepared samples was measured during hydrogen molecule adsorption to investigate the hydrogen adsorption mechanism. It was found that the electrical resistance changed as a result of the easy hydrogen molecule approach, as well …


Enhanced Hydrogen Storage Properties Of Naalh4 Co-Catalysed With Niobium Fluoride And Single-Walled Carbon Nanotubes, Jianfeng Mao, Zaiping Guo, Hua-Kun Liu Jan 2012

Enhanced Hydrogen Storage Properties Of Naalh4 Co-Catalysed With Niobium Fluoride And Single-Walled Carbon Nanotubes, Jianfeng Mao, Zaiping Guo, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

The effects of single-walled carbon nanotubes (SWCNTs) as a co-catalyst with NbF5 on the dehydrogenation and hydrogenation kinetics of NaAlH4 were investigated by X-ray diffraction, Fourier transform infrared spectroscopy, differential thermal analysis, temperature-programmed desorption, and isothermal hydrogen ab/desorption techniques. It has been revealed that there is a synergistic effect of SWCNTs and NbF5 on the de/rehydrogenation of NaAlH4, which improves the hydrogen de/absorption performance when compared to adding either SWCNTs or NbF5 alone. For example, the apparent activation energy for the first-step and the second-step dehydrogenation of the co-doped NaAlH4 sample is estimated to be 85.9 …


Ammonium Octahydrotriborate (Nh4b3h8): New Synthesis, Structure, And Hydrolytic Hydrogen Release, Zhenguo Huang, Xuenian Chen, Teshome Yisgedu, Edward A. Meyers, Sheldon Shore, J C. Zhao Jan 2011

Ammonium Octahydrotriborate (Nh4b3h8): New Synthesis, Structure, And Hydrolytic Hydrogen Release, Zhenguo Huang, Xuenian Chen, Teshome Yisgedu, Edward A. Meyers, Sheldon Shore, J C. Zhao

Australian Institute for Innovative Materials - Papers

A metathesis reaction between unsolvated NaB3H8 and NH4Cl provides a simple and high-yield synthesis of NH4B3H8. Structure determination through X-ray single crystal diffraction analysis reveals weak N—Hδ+- - -Hδ-—B interaction in NH4B3H8 and strong N—Hδ+—Hδ-—B interaction in NH4B3H8·18-crown-6·THF adduct. Pyrolysis of NH4B3H8 leads to the formation of hydrogen gas with appreciable amounts of other volatile boranes below 160°C. Hydrolysis experiments show that …


High-Capacity Hydrogen Release Through Hydrolysis Of Nab3h8, Zhenguo Huang, Xuenian Chen, Teshome Yisgedu, J C. Zhao, Sheldon Shore Jan 2011

High-Capacity Hydrogen Release Through Hydrolysis Of Nab3h8, Zhenguo Huang, Xuenian Chen, Teshome Yisgedu, J C. Zhao, Sheldon Shore

Australian Institute for Innovative Materials - Papers

NaB3H8 has advantages over NaBH4 and NH3BH3, two most widely studied chemical hydrides for hydrogen storage via hydrolysis. NaB3H8 has an extraordinary high solubility in water and thus possesses a high theoretical capacity of 10.5 wt% H via hydrolysis, in contrast to 7.5 wt% for NaBH4 and 5.1 wt% for NH3BH3. NaB3H8 is reasonably stable in water which makes it unnecessary to add corrosive NaOH as a stabilizer as the case for NaBH4. Furthermore, hydrolysis of NaB3H8 can be catalyzed by a Co-based catalyst with fast kinetics that is comparable to Ru-based catalysts. Therefore, cost-effective hydrolysis of NaB3H8 is possible …


Li2b12h12·7nh3: A New Ammine Complex For Ammonia Storage Or Indirect Hydrogen Storage, Zhenguo Huang, Judith C. Gallucci, Xuenian Chen, Teshome B. Yisgedu, Hima Kumar Lingam, Sheldon G. Shore, Ji-Cheng Zhao Jan 2010

Li2b12h12·7nh3: A New Ammine Complex For Ammonia Storage Or Indirect Hydrogen Storage, Zhenguo Huang, Judith C. Gallucci, Xuenian Chen, Teshome B. Yisgedu, Hima Kumar Lingam, Sheldon G. Shore, Ji-Cheng Zhao

Australian Institute for Innovative Materials - Papers

A new ammine complex, Li2B12H12$7NH3, that can reversibly release all the NH3 at below 200oC and reabsorb NH3 at room temperature and 0.5 bar was synthesized and investigated for reversible ammonia storage or indirect hydrogen storage.


Inter­Molecular Di­Hydrogen- And Hydrogen-Bonding Inter­Actions In Di­Ammonium Closo-Deca­Hydro­Deca­Borate Sesquihydrate, Teshome B. Yisgedu, Xuenian Chen, Hima Kumar Lingam, Zhenguo Huang, Edward A. Meyers, Sheldon G. Shore, Ji-Cheng Zhao Jan 2010

Inter­Molecular Di­Hydrogen- And Hydrogen-Bonding Inter­Actions In Di­Ammonium Closo-Deca­Hydro­Deca­Borate Sesquihydrate, Teshome B. Yisgedu, Xuenian Chen, Hima Kumar Lingam, Zhenguo Huang, Edward A. Meyers, Sheldon G. Shore, Ji-Cheng Zhao

Australian Institute for Innovative Materials - Papers

The asymmetric unit of the title salt, 2NH4+_B10H102__1.5H2O or (NH4)2B10H10_1.5H2O, (I), contains two B10H102_ anions, four NH4+ cations and three water molecules. (I) was converted to the anhydrous compound (NH4)2B10H10, (II), by heating to 343 K and its X-ray powder pattern was obtained. The extended structure of (I) shows two types of hydrogen-bonding interactions (N-H_ _ _O and O-H_ _ _O) and two types of dihydrogen-bonding interactions (N- H_ _ _H-B and O-H_ _ _H-B). The N-H_ _ _H-B dihydrogen bonding forms a two-dimensional sheet structure, and hydrogen bonding (N-H_ _ _O and O-H_ _ _O) and O- H_ _ …


Improved Hydrogen Storage Of Libh4 Catalyzed Magnesium, J.F Mao, Z Wu, T.J Chen, B.C Weng, N.X Xu, T.S Huang, Zaiping Guo, Hua-Kun Liu, D.M Grant, Gavin S Walker, Xuebin Yu Jan 2007

Improved Hydrogen Storage Of Libh4 Catalyzed Magnesium, J.F Mao, Z Wu, T.J Chen, B.C Weng, N.X Xu, T.S Huang, Zaiping Guo, Hua-Kun Liu, D.M Grant, Gavin S Walker, Xuebin Yu

Australian Institute for Innovative Materials - Papers

The effect of LiBH4 on the hydrogen sorption performance of magnesium was investigated. It was found that the hydrogen storage properties of LiBH4/Mg mixtures exhibit a dramatic improvement as compared to plain magnesium powder. For example, at 250°C, a LiBH4/Mg (mass ratio 1:4) composite can absorb 6.7 wt % hydrogen in 60 min, while only less than 1 wt % hydrogen was absorbed by pure magnesium in the same period under similar conditions. The hydrogen desorption properties of the composite at 350°C were also improved significantly as compared to the plain …


Distributed Polarizability Of The Water Dimer: Field-Induced Charge Transfer Along The Hydrogen Bond, Marc In Het Panhuis, P L A Popelier, R W. Munn, J G. Angyan Jan 2001

Distributed Polarizability Of The Water Dimer: Field-Induced Charge Transfer Along The Hydrogen Bond, Marc In Het Panhuis, P L A Popelier, R W. Munn, J G. Angyan

Australian Institute for Innovative Materials - Papers

The topological partitioning of electronic properties approach at Hartree-Fock level is used to investigate charge transfer response in a water dimer. Distributed polarizability components are employed to calculate the change in electron density under external fields. Field-induced charge flow between the water monomers is most significant along the direction of the hydrogen bond. The molecular polarizability of the molecules in the dimer is reduced owing to formation of the hydrogen bond.