Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Engineering

Laser Vaporization And Controlled Condensation (Lvcc) Of Graphene Supported Pd/Fe3o4 Nanoparticles As An Efficient Magnetic Catalysts For Suzuki Cross – Coupling, Hany A. Elazab Jun 2018

Laser Vaporization And Controlled Condensation (Lvcc) Of Graphene Supported Pd/Fe3o4 Nanoparticles As An Efficient Magnetic Catalysts For Suzuki Cross – Coupling, Hany A. Elazab

Chemical and Biochemical Engineering Faculty Research & Creative Works

Herein, a reproducible, reliable, and efficient method was reported for the synthesis of palladium nanoparticles dispersed on a composite of Fe3O4 and graphene (Pd-Fe3O4/G) as a highly efficient active catalyst for being used in Suzuki cross–coupling reactions. Graphene supported Pd/Fe3O4 nanoparticles (Pd-Fe3O4/G) exhibit a remarkable catalytic performance towards Suzuki coupling reactions. Moreover, the prepared catalyst could be recycled for up to three times with high catalytic activity. The catalyst was prepared using LVCC synthesis; the prepared catalyst is highly magnetic which provides a platform to facilitate …


Analysis Of Nonlinear Graphene Plasmonics Using Surface Integral Equations, Ling Ling Meng, Tian Xia, Xiaoyan Y.Z. Xiong, Li (Lijun) Jun Jiang, Weng Cho Chew May 2018

Analysis Of Nonlinear Graphene Plasmonics Using Surface Integral Equations, Ling Ling Meng, Tian Xia, Xiaoyan Y.Z. Xiong, Li (Lijun) Jun Jiang, Weng Cho Chew

Electrical and Computer Engineering Faculty Research & Creative Works

Graphene plasmonics have attracted significant attention in the past few years due to the remarkable optical and electrical properties of graphene. A highly effective method based on surface integral equations (SIE) in the frequency domain is proposed to describe both linear and nonlinear effects of graphene efficiently and accurately. Graphene, a centrosymmet-ric material, can possess second harmonic generation (SHG) when the conductivity is nonlocal. In this work, the fundamental harmonic (FH) of a graphene wrapped particle is studied as the first benchmark by introducing a conducting surface in SIE. Then it is modified to analyze a graphene-based patch antenna in …


Effective Room-Temperature Ammonia-Sensitive Composite Sensor Based On Graphene Nanoplates And Pani, Zongbiao Ye, Yan Chen, Bohao Liu, Yuanjie Su, Zhi Chen, Huiling Tai, Yadong Jiang Apr 2018

Effective Room-Temperature Ammonia-Sensitive Composite Sensor Based On Graphene Nanoplates And Pani, Zongbiao Ye, Yan Chen, Bohao Liu, Yuanjie Su, Zhi Chen, Huiling Tai, Yadong Jiang

Electrical and Computer Engineering Faculty Publications

The graphene nanoplate (GN)-polyaniline (PANI) composite was developed via in-situ polymerization method and simultaneously assembled on interdigital electrodes (IDEs) at low temperature for ammonia (NH3) detection. The assembled composite sensor showed excellent sensing performance toward different concentrations of NH3, 1.5 of response value and 123 s/204 s for the response/recovery time to 15 ppm NH3. Meanwhile, an interesting supersaturation phenomenon was observed at high concentration of NH3. A reasonable speculation was proposed for this special sensing behavior and the mechanism for enhanced sensing properties was also analyzed.


Matrix Effect Study And Immunoassay Detection Using Electrolyte-Gated Graphene Biosensor, Jianbo Sun, Yuxin Liu Jan 2018

Matrix Effect Study And Immunoassay Detection Using Electrolyte-Gated Graphene Biosensor, Jianbo Sun, Yuxin Liu

Faculty & Staff Scholarship

Significant progress has been made on the development of electrolyte-gated graphene field effect transistor (EGGFET) biosensors over the last decade, yet they are still in the stage of proof-of-concept. In this work, we studied the electrolyte matrix effects, including its composition, pH and ionic strength, and demonstrate that variations in electrolyte matrices have a significant impact on the Fermi level of the graphene channel and the sensitivity of the EGGFET biosensors. This is attributed to the polarization-induced interaction between the electrolyte and the graphene at the interface which can lead to considerable modulation of the Fermi level of the graphene …


Engineering Surface Amine Modifiers Of Ultrasmall Gold Nanoparticles Supported On Reduced Graphene Oxide For Improved Electrochemical Co2 Reduction, Yong Zhao, Caiyun Wang, Yuqing Liu, Douglas R. Macfarlane, Gordon G. Wallace Jan 2018

Engineering Surface Amine Modifiers Of Ultrasmall Gold Nanoparticles Supported On Reduced Graphene Oxide For Improved Electrochemical Co2 Reduction, Yong Zhao, Caiyun Wang, Yuqing Liu, Douglas R. Macfarlane, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Ultrasmall gold (Au) nanoparticles with high mass activity have great potential for practical applications in CO2electroreduction. However, these nanoparticles often suffer from poor product selectivity since their abundant low-coordinated sites are favorable for H2evolution. In this work, a catalyst, reduced graphene oxide supported ultrasmall Au nanoparticles (≈2.4 nm) is developed which delivers high Au-specific mass activities (>100 A g-1) and good Faradaic efficiencies (32-60%) for the CO2-to-CO conversion at moderate overpotentials (450-600 mV). The efficiencies can be improved to 59-75% while retaining the ultrahigh mass activities via a simple amine-modification strategy. In addition, an amine-structure-dependent effect is revealed: linear …


Matrix Effect Study And Immunoassay Detection Using Electrolyte-Gated Graphene Biosensor, Jianbo Sun, Yuxin Liu Jan 2018

Matrix Effect Study And Immunoassay Detection Using Electrolyte-Gated Graphene Biosensor, Jianbo Sun, Yuxin Liu

Faculty & Staff Scholarship

Significant progress has been made on the development of electrolyte-gated graphene field effect transistor (EGGFET) biosensors over the last decade, yet they are still in the stage of proof-of-concept. In this work, we studied the electrolyte matrix effects, including its composition, pH and ionic strength, and demonstrate that variations in electrolyte matrices have a significant impact on the Fermi level of the graphene channel and the sensitivity of the EGGFET biosensors. This is attributed to the polarization-induced interaction between the electrolyte and the graphene at the interface which can lead to considerable modulation of the Fermi level of the graphene …