Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

PDF

Nanotechnology

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 39

Full-Text Articles in Engineering

Interactions Of Carboxylated Nanodiamonds With Mouse Macrophages Cell Line And Primary Cells, Maisoun Bani-Hani, Stephen J. Beebe, Michael W. Stacey, Christopher Osgood Jan 2023

Interactions Of Carboxylated Nanodiamonds With Mouse Macrophages Cell Line And Primary Cells, Maisoun Bani-Hani, Stephen J. Beebe, Michael W. Stacey, Christopher Osgood

Bioelectrics Publications

Nanodiamonds (ND) have attracted significant interest for their use in several biomedical applications. These applications can be very useful if the safety and compatibility of ND are proven. We assessed the effects of ND (100 nm, Carboxylated) on primary macrophages and a macrophage-like cell line and found that these particles are not toxic to these cells at lower concentrations but may interfere with cell functions and differentiation. Internalization of ND by these cells in a time- and dose-dependent manner was mostly via phagocytosis and clathrin-dependent endocytosis and localized to the cytoplasm but not into the nucleus. No significant induction of …


Biomedical Applications Of Lanthanide Nanomaterials, For Imaging, Sensing And Therapy, Qize Zhang, Stephen O'Brien, Jan Grimm Jan 2022

Biomedical Applications Of Lanthanide Nanomaterials, For Imaging, Sensing And Therapy, Qize Zhang, Stephen O'Brien, Jan Grimm

Publications and Research

The application of nanomaterials made of rare earth elements within biomedical sciences continues to make significant progress. The rare earth elements, also called the lanthanides, play an essential role in modern life through materials and electronics. As we learn more about their utility, function, and underlying physics, we can contemplate extending their applications to biomedicine. This particularly applies to diagnosis and radiation therapy due to their relatively unique features, such as an ultra-wide Stokes shift in the luminescence, variable magnetism and potentially tunable properties, due to the library of lanthanides available and their multivalent oxidation state chemistry. The ability to …


Synergistic Anticancer Response Of Curcumin And Piperine Loaded Lignin-G-P (Nipam-Co-Dmaema) Gold Nanogels Against Glioblastoma Multiforme, Xinyi Zhao, Bilal Javad, Daxing Cui, James Curtin, Furong Tian Oct 2021

Synergistic Anticancer Response Of Curcumin And Piperine Loaded Lignin-G-P (Nipam-Co-Dmaema) Gold Nanogels Against Glioblastoma Multiforme, Xinyi Zhao, Bilal Javad, Daxing Cui, James Curtin, Furong Tian

Articles

Glioblastoma multiforme (GBM) is the most aggressive and commonly diag- 11 nosed brain cancer and presents a strong resistance to routine chemotherapeutic drugs. 12 The present study involves the synthesis of Lignin-g- p (NIPAM-co-DMAEMA) gold 13 nanogel, loaded with curcumin and piperine to treat GBM. The application has three 14 functions: (1) overcome the limitations of biodistribution, (2) enhance the toxicity of an- 15 ticancer drugs against GBM, (3) identify the uptake pathway. Atom transfer radical 16 polymerization was used to synthesize the Lignin-g-PNIPAM network, crosslinked with 17 the gold nanoparticles (GNPs) to self-assemble into nanogels. The size distribution and …


Impact Of Angiogenic And Osteogenic Factors In The Presence Of Biodegradable Piezoelectric Films, Jayla Millender May 2021

Impact Of Angiogenic And Osteogenic Factors In The Presence Of Biodegradable Piezoelectric Films, Jayla Millender

University Scholar Projects

One of the most common causes of bone graft rejection is lack of a vascular network connecting the graft to the existing native tissue – allowing for nutrient flow. Under current grafting techniques, the existing blood vessel network in the patient slowly invades the implant in order to supply the injured site with its necessary nutrients. The purpose of this research is to determine if a synthetic bone graft with a stable microvascular network can be developed in vitro. I hypothesize that the use of indirect angiogenic factors such as sonic hedgehog homolog and hypoxia-inducible factor-1 in combination with the …


Raising Dielectric Permittivity Mitigates Dopant-Induced Disorder In Conjugated Polymers, Meenakshi Upadhyaya, Michael Lu-Díaz, Subhayan Samanta, Muhammad Abdullah, Keith Dusoe, Kevin R. Kittilstved, Dhandapani Venkataraman, Zlatan Akšamija Jan 2021

Raising Dielectric Permittivity Mitigates Dopant-Induced Disorder In Conjugated Polymers, Meenakshi Upadhyaya, Michael Lu-Díaz, Subhayan Samanta, Muhammad Abdullah, Keith Dusoe, Kevin R. Kittilstved, Dhandapani Venkataraman, Zlatan Akšamija

Electrical and Computer Engineering Faculty Publication Series

Conjugated polymers need to be doped to increase charge carrier density and reach the electrical conductivity necessary for electronic and energy applications. While doping increases carrier density, Coulomb interactions between the dopant molecules and the localized carriers are poorly screened, causing broadening and a heavy tail in the electronic density-of-states (DOS). The authors examine the effects of dopant-induced disorder on two complimentary charge transport properties of semiconducting polymers, the Seebeck coefficient and electrical conductivity, and demonstrate a way to mitigate them. Their simulations, based on a modified Gaussian disorder model with Miller-Abrahams hopping rates, show that dopant-induced broadening of the …


Inventions Of Scientists, Engineers And Specialists From Different Countries In The Area Of Nanotechnologies. Part Vi, Leonid A. Ivanov, Li D. Xu, Konstantin E. Razumeev, Zhanna V. Pisarenko, Aleksey V. Demenev Jan 2021

Inventions Of Scientists, Engineers And Specialists From Different Countries In The Area Of Nanotechnologies. Part Vi, Leonid A. Ivanov, Li D. Xu, Konstantin E. Razumeev, Zhanna V. Pisarenko, Aleksey V. Demenev

Information Technology & Decision Sciences Faculty Publications

Introduction. Advanced technologies impress people's imagination demonstrating the latest achievements (materials, methods, systems, technologies, devices etc.) that dramatically change the world. This, first of all, concerns nanotechnological inventions designed by scientists, engineers and specialists from different countries. Main part. The article provides an abstract overview of inventions of scientists, engineers and specialists from different countries: Russia, USA, China, Kazakhstan, Sweden. The results of the creative activity of scientists, engineers and specialists, including inventions in the field of nanotechnology and nanomaterials allow, when introduced to industry, achieving a significant effect in construction, housing and communal services, and related sectors of the …


Engineering Electromagnetic Systems For Next-Generation Brain-Machine Interface, Brayan Ricardo Navarrete Nov 2020

Engineering Electromagnetic Systems For Next-Generation Brain-Machine Interface, Brayan Ricardo Navarrete

FIU Electronic Theses and Dissertations

MagnetoElectric Nanoparticles (MENPs) are known to be a powerful tool for a broad range of applications spanning from medicine to energy-efficient electronics. MENPs allow to couple intrinsic electric fields in the nervous system with externally controlled magnetic fields. This thesis exploited MENPs to achieve contactless brain-machine interface (BMIs). Special electromagnetic devices were engineered for controlling the MENPs’ magnetoelectric effect to enable stimulation and recording. The most important engineering breakthroughs of the study are summarized below.

(I) Metastable Physics to Localize Nanoparticles: One of the main challenges is to localize the nanoparticles at any selected site(s) in the brain. The fundamental …


In Vivo Biosynthesis Of Inorganic Nanomaterials Using Eukaryotes - A Review, Ashiqur Rahman, Julia Lin, Francisco E. Jaramillo, Dennis A. Bazylinski, Clayton Jeffryes, Si Amar Dahoumane Jun 2020

In Vivo Biosynthesis Of Inorganic Nanomaterials Using Eukaryotes - A Review, Ashiqur Rahman, Julia Lin, Francisco E. Jaramillo, Dennis A. Bazylinski, Clayton Jeffryes, Si Amar Dahoumane

Life Sciences Faculty Research

Bionanotechnology, the use of biological resources to produce novel, valuable nanomaterials, has witnessed tremendous developments over the past two decades. This eco-friendly and sustainable approach enables the synthesis of numerous, diverse types of useful nanomaterials for many medical, commercial, and scientific applications. Countless reviews describing the biosynthesis of nanomaterials have been published. However, to the best of our knowledge, no review has been exclusively focused on the in vivo biosynthesis of inorganic nanomaterials. Therefore, the present review is dedicated to filling this gap by describing the many different facets of the in vivo biosynthesis of nanoparticles (NPs) using living eukaryotic …


Plasmonic-Active Nanostructured Thin Films, Jay Bhattarai, Helal Maruf, Keith Stine Jan 2020

Plasmonic-Active Nanostructured Thin Films, Jay Bhattarai, Helal Maruf, Keith Stine

Chemistry & Biochemistry Faculty Works

Plasmonic-active nanomaterials are of high interest to scientists because of their expanding applications in the field for medicine and energy. Chemical and biological sensors based on plasmonic nanomaterials are well-established and commercially available, but the role of plasmonic nanomaterials on photothermal therapeutics, solar cells, super-resolution imaging, organic synthesis, etc. is still emerging. The effectiveness of the plasmonic materials on these technologies depends on their stability and sensitivity. Preparing plasmonics-active nanostructured thin films (PANTFs) on a solid substrate improves their physical stability. More importantly, the surface plasmons of thin film and that of nanostructures can couple in PANTFs enhancing the sensitivity. …


Internet Of Things For Sustainable Human Health, Abdul Salam Jan 2020

Internet Of Things For Sustainable Human Health, Abdul Salam

Faculty Publications

The sustainable health IoT has the strong potential to bring tremendous improvements in human health and well-being through sensing, and monitoring of health impacts across the whole spectrum of climate change. The sustainable health IoT enables development of a systems approach in the area of human health and ecosystem. It allows integration of broader health sub-areas in a bigger archetype for improving sustainability in health in the realm of social, economic, and environmental sectors. This integration provides a powerful health IoT framework for sustainable health and community goals in the wake of changing climate. In this chapter, a detailed description …


Interfacial Current Distribution Between Helium Plasma Jet And Water Solution, Sui Wang, Dingxin Liu, Zifeng Wang, Yifan Liu, Qiaosong Li, Xiaohua Wang, Michael G. Kong, Mingzhe Rong Jan 2020

Interfacial Current Distribution Between Helium Plasma Jet And Water Solution, Sui Wang, Dingxin Liu, Zifeng Wang, Yifan Liu, Qiaosong Li, Xiaohua Wang, Michael G. Kong, Mingzhe Rong

Bioelectrics Publications

The plasma-liquid interaction holds great importance for a number of emerging applications such as plasma biomedicine, yet a main fundamental question remains about the nature of the physiochemical processes occurring at the plasma-liquid interface. In this paper, the interfacial current distribution between helium plasma jet and water solution was measured for the first time by means of the splitting electrode method, which was borrowed from the field of arc plasma. For a plasma plume in continuous mode, it was found that the mean absolute current distribution at the plasma-liquid interface typically had an annular shape. This shape could be affected …


Nanoporous Gold And Other Related Materials, Keith Stine Jul 2019

Nanoporous Gold And Other Related Materials, Keith Stine

Chemistry & Biochemistry Faculty Works

No abstract provided.


Using Green Emitting Ph-Responsive Nanogels To Report Environmental Changes Within Hydrogels: A Nanoprobe For Versatile Sensing, Mingning Zhu, Dongdong Lu, Shanglin Wu, Qing Lian, Wenkai Wang, L. Andrew Lyon, Weiguang Wang, Paulo Bártolo, Brian R. Saunders May 2019

Using Green Emitting Ph-Responsive Nanogels To Report Environmental Changes Within Hydrogels: A Nanoprobe For Versatile Sensing, Mingning Zhu, Dongdong Lu, Shanglin Wu, Qing Lian, Wenkai Wang, L. Andrew Lyon, Weiguang Wang, Paulo Bártolo, Brian R. Saunders

Engineering Faculty Articles and Research

Remotely reporting the local environment within hydrogels using inexpensive laboratory techniques has excellent potential to improve our understanding of the nanometer-scale changes that cause macroscopic swelling or deswelling. Whilst photoluminescence (PL) spectroscopy is a popular method for such studies this approach commonly requires bespoke and time-consuming synthesis to attach fluorophores which may leave toxic residues. A promising and more versatile alternative is to use a pre-formed nanogel probe that contains a donor/acceptor pair and then “dope” that into the gel during gel assembly. Here, we introduce green-emitting methacrylic acid-based nanogel probe particles and use them to report the local environment …


All-Optical Control Of Lead Halide Perovskite Microlasers, Nan Zhang, Yubin Fan, Kaiyang Wang, Zhiyuan Gu, Yuhan Wang, Li Ge, Shumin Xiao, Qinghai Song Apr 2019

All-Optical Control Of Lead Halide Perovskite Microlasers, Nan Zhang, Yubin Fan, Kaiyang Wang, Zhiyuan Gu, Yuhan Wang, Li Ge, Shumin Xiao, Qinghai Song

Publications and Research

Lead halide perovskites based microlasers have recently shown their potential in nanophotonics. However, up to now, all of the perovskite microlasers are static and cannot be dynamically tuned in use. Herein, we demonstrate a robust mechanism to realize the alloptical control of perovskite microlasers. In lead halide perovskite microrods, deterministic mode switching takes place as the external excitation is increased: the onset of a new lasing mode switches off the initial one via a negative power slope, while the main laser characteristics are well kept. This mode switching is reversible with the excitation and has been explained via cross-gain saturation. …


Å-Indentation For Non-Destructive Elastic Moduli Measurements Of Supported Ultra-Hard Ultra-Thin Films And Nanostructures, Filippo Cellini, Yang Gao, Elisa Riedo Mar 2019

Å-Indentation For Non-Destructive Elastic Moduli Measurements Of Supported Ultra-Hard Ultra-Thin Films And Nanostructures, Filippo Cellini, Yang Gao, Elisa Riedo

Publications and Research

During conventional nanoindentation measurements, the indentation depths are usually larger than 1–10 nm, which hinders the ability to study ultra-thin films (<10 >nm) and supported atomically thin two-dimensional (2D) materials. Here, we discuss the development of modulated Å-indentation to achieve sub-Å indentations depths during force-indentation measurements while also imaging materials with nanoscale resolution. Modulated nanoindentation (MoNI) was originally invented to measure the radial elasticity of multi-walled nanotubes. w, by using extremely small amplitude oscillations (<<1 Å) at high frequency, and stiff cantilevers, we show how modulated nano/Å-indentation (MoNI/ÅI) enables non-destructive measurements of the contact stiffness and indentation modulus of ultra-thin ultra-stiff films, including CVD diamond films (~1000 GPa stiffness), as well as the transverse modulus of 2D materials. Our analysis demonstrates that in presence of a standard laboratory noise floor, the signal to noise ratio of MoNI/ÅI implemented with a commercial atomic force microscope (AFM) is such that a dynamic range of 80 dB –– achievable with commercial Lock-in amplifiers –– is sufficient to observe superior indentation curves, having indentation depths as small as 0.3 Å, resolution in indentation <0.05 Å, and in normal load <0.5 nN. Being implemented on a standard AFM, this method has the potential for a broad applicability.


Distribution And Localization Of Novel Iodine Nanoparticles In The Human Glioma 1242 Growing In The Brains Of Mice, Benjamin Billings Jun 2018

Distribution And Localization Of Novel Iodine Nanoparticles In The Human Glioma 1242 Growing In The Brains Of Mice, Benjamin Billings

Honors Scholar Theses

Observing and designing the in vivo distribution and localization of therapeutic nanoparticles is an essential aspect of developing and understanding novel nanoparticle- based medical treatments. This study investigates novel PEGylated Iodine-based nanoparticles (INPs), an alternate composition to the more widely researched gold nanoparticles (AuNPs), which may help avoid adverse effects associated with AuNPs, such as potential toxicity and skin discoloration, when used in similar applications. Determining the localization of the novel INPs within murine brains containing human glioma U-1242MG cells is critical in assisting the development of radiation dose enhancement therapy for this aggressive cancer. Radiation dose enhancement utilizes the …


Nanoparticle-Mediated Therapeutic Agent Delivery For Treating Metastatic Breast Cancer—Challenges And Opportunities, Yunfei Li, Brock Humphries, Chengfeng Yang, Zhishan Wang May 2018

Nanoparticle-Mediated Therapeutic Agent Delivery For Treating Metastatic Breast Cancer—Challenges And Opportunities, Yunfei Li, Brock Humphries, Chengfeng Yang, Zhishan Wang

Toxicology and Cancer Biology Faculty Publications

Breast cancer (BC) is the second leading cause of cancer-related death in American women and more than 90% of BC-related death is caused by metastatic BC (MBC). This review stresses the limited success of traditional therapies as well as the use of nanomedicine for treating MBC. Understanding the biological barriers of MBC that nanoparticle in vivo trafficking must overcome could provide valuable new insights for translating nanomedicine from the bench side to the bedside. A view about nanomedicine applied in BC therapy has been summarized with their present status, which is gaining attention in the clinically-applied landscape. The progressions of …


Preparation, Modification, Characterization, And Biosensing Application Of Nanoporous Gold Using Electrochemical Techniques, Jay Bhattarai, Dharmendra Neupane, Bishal Nepal, Vasilii Mikhaylov, Alexei Demchenko, Keith Stine Mar 2018

Preparation, Modification, Characterization, And Biosensing Application Of Nanoporous Gold Using Electrochemical Techniques, Jay Bhattarai, Dharmendra Neupane, Bishal Nepal, Vasilii Mikhaylov, Alexei Demchenko, Keith Stine

Chemistry & Biochemistry Faculty Works

Nanoporous gold (np-Au), because of its high surface area-to-volume ratio, excellent conductivity, chemical inertness, physical stability, biocompatibility, easily tunable pores, and plasmonic properties, has attracted much interested in the field of nanotechnology. It has promising applications in the fields of catalysis, bio/chemical sensing, drug delivery, biomolecules separation and purification, fuel cell development, surface-chemistry-driven actuation, and supercapacitor design. Many chemical and electrochemical procedures are known for the preparation of np-Au. Recently, researchers are focusing on easier and controlled ways to tune the pores and ligaments size of np-Au for its use in different applications. Electrochemical methods have good control over fine-tuning …


Delayed Hypersensitivity To Nanosecond Pulsed Electric Field In Electroporated Cells, Sarah D. Jensen, Vera A. Khorokhorina, Claudia Muratori, Andrei G. Pakhomov, Olga N. Pakhomova Sep 2017

Delayed Hypersensitivity To Nanosecond Pulsed Electric Field In Electroporated Cells, Sarah D. Jensen, Vera A. Khorokhorina, Claudia Muratori, Andrei G. Pakhomov, Olga N. Pakhomova

Bioelectrics Publications

We demonstrate that conditioning of mammalian cells by electroporation with nanosecond pulsed electric field (nsPEF) facilitates their response to the next nsPEF treatment. The experiments were designed to unambiguously separate the electroporation-induced sensitization and desensitization effects. Electroporation was achieved by bursts of 300-ns, 9 kV/cm pulses (50 Hz, n = 3–100) and quantified by propidium dye uptake within 11 min after the nsPEF exposure. We observed either sensitization to nsPEF or no change (when the conditioning was either too weak or too intense, or when the wait time after conditioning was too short). Within studied limits, conditioning never caused desensitization. …


Chitosan Nanoparticle Modifications For Improved Gene Delivery In An Oral Dna Vaccine Application, Austin Helmink Apr 2017

Chitosan Nanoparticle Modifications For Improved Gene Delivery In An Oral Dna Vaccine Application, Austin Helmink

Honors Theses

Vaccines represent one of the most significant medical innovations of the 20th century, resulting in the eradication or near eradication of a handful of deadly diseases. However, many infectious diseases remain resistant to effective vaccination, largely due to a lack full immune activation by traditional protein-based vaccines. A promising alternative vaccination strategy is the emerging development of DNA vaccines, which rely upon the delivery of exogenous genetic material to host cells encoding for a viral or bacterial antigen in order to induce a robust immune response by closely mimicking live infection. The delivery of genetic material requires a carrier …


Design Of Nanoparticle-Based Carriers For Targeted Drug Delivery, Xiaojiao Yu, Ian Trase, Muqing Ren, Kayla Duval, Xing Guo, Zi Chen Jul 2016

Design Of Nanoparticle-Based Carriers For Targeted Drug Delivery, Xiaojiao Yu, Ian Trase, Muqing Ren, Kayla Duval, Xing Guo, Zi Chen

Dartmouth Scholarship

Nanoparticles have shown promise as both drug delivery vehicles and direct antitumor systems, but they must be properly designed in order to maximize efficacy. Computational modeling is often used both to design new nanoparticles and to better understand existing ones. Modeled processes include the release of drugs at the tumor site and the physical interaction between the nanoparticle and cancer cells. In this paper, we provide an overview of three different targeted drug delivery methods (passive targeting, active targeting, and physical targeting) and compare methods of action, advantages, limitations, and the current stages of research. For the most commonly used …


Hydrothermally Processed 1d Hydroxyapatite: Mechanism Of Formation And Biocompatibility Studies, Zoran Stojanović, Nenad Ignjatović, Victoria M. Wu, Vojca Žunič, Ljiljana Veselinović, Srečo D. Škapin, Miroslav Miljković, Vuk Uskoković, Dragab Uskoković Jun 2016

Hydrothermally Processed 1d Hydroxyapatite: Mechanism Of Formation And Biocompatibility Studies, Zoran Stojanović, Nenad Ignjatović, Victoria M. Wu, Vojca Žunič, Ljiljana Veselinović, Srečo D. Škapin, Miroslav Miljković, Vuk Uskoković, Dragab Uskoković

Pharmacy Faculty Articles and Research

Recent developments in bone tissue engineering have led to an increased interest in one-dimensional (1D) hydroxyapatite (HA) nano- and micro-structures such as wires, ribbons and tubes. They have been proposed for use as cell substrates, reinforcing phases in composites and carriers for biologically active substances. Here we demonstrate the synthesis of 1D HA structures using an optimized, urea-assisted, high-yield hydrothermal batch process. The one-pot process, yielding HA structures composed of bundles of ribbons and wires, was typified by the simultaneous occurrence of a multitude of intermediate reactions, failing to meet the uniformity criteria over particle morphology and size. To overcome …


Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu Jun 2016

Calcium Phosphate As A Key Material For Socially Responsible Tissue Engineering, Vuk Uskoković, Victoria M. Wu

Pharmacy Faculty Articles and Research

Socially responsible technologies are designed while taking into consideration the socioeconomic, geopolitical and environmental limitations of regions in which they will be implemented. In the medical context, this involves making therapeutic platforms more accessible and affordable to patients in poor regions of the world wherein a given disease is endemic. This often necessitates going against the reigning trend of making therapeutic nanoparticles ever more structurally complex and expensive. However, studies aimed at simplifying materials and formulations while maintaining the functionality and therapeutic response of their more complex counterparts seldom provoke a significant interest in the scientific community. In this review …


Complex Coacervate-Based Materials For Biomedicine, Sarah L. Perry, Whitney C. Blocher Jan 2016

Complex Coacervate-Based Materials For Biomedicine, Sarah L. Perry, Whitney C. Blocher

Chemical Engineering Faculty Publication Series

There has been increasing interest in complex coacervates for deriving and trans- porting biomaterials. Complex coacervates are a dense, polyelectrolyte-rich liq- uid that results from the electrostatic complexation of oppositely charged macroions. Coacervates have long been used as a strategy for encapsulation, par- ticularly in food and personal care products. More recent efforts have focused on the utility of this class of materials for the encapsulation of small molecules, pro- teins, RNA, DNA, and other biomaterials for applications ranging from sensing to biomedicine. Furthermore, coacervate-related materials have found utility in other areas of biomedicine, including cartilage mimics, tissue culture scaffolds, …


When 1 + 1 > 2: Nanostructured Composites For Hard Tissue Engineering Applications, Vuk Uskoković Dec 2015

When 1 + 1 > 2: Nanostructured Composites For Hard Tissue Engineering Applications, Vuk Uskoković

Pharmacy Faculty Articles and Research

Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. …


Label-Free Surface-Enhanced Raman Spectroscopy-Linked Immunosensor Assay (Slisa) For Environmental Surveillance, Vinay Bhardwaj Oct 2015

Label-Free Surface-Enhanced Raman Spectroscopy-Linked Immunosensor Assay (Slisa) For Environmental Surveillance, Vinay Bhardwaj

FIU Electronic Theses and Dissertations

The contamination of the environment, accidental or intentional, in particular with chemical toxins such as industrial chemicals and chemical warfare agents has increased public fear. There is a critical requirement for the continuous detection of toxins present at very low levels in the environment. Indeed, some ultra-sensitive analytical techniques already exist, for example chromatography and mass spectroscopy, which are approved by the US Environmental Protection Agency for the detection of toxins. However, these techniques are limited to the detection of known toxins. Cellular expression of genomic and proteomic biomarkers in response to toxins allows monitoring of known as well as …


A Sensorless Haptic Interface For Robotic Minimally Invasive Surgery, Baoliang Zhao Aug 2015

A Sensorless Haptic Interface For Robotic Minimally Invasive Surgery, Baoliang Zhao

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Robotic minimally invasive surgery (R-MIS) has gained in popularity due to its advantages of improving the accuracy and dexterity of surgical interventions while minimizing trauma to the patient. However, because of the loss of direct contact with the surgical site, the surgeon cannot perceive tactile information, which may adversely affect surgical efficiency and/or efficacy. The lack of haptic feedback is regarded as a limiting factor in existing R-MIS technology.

To solve this problem, researchers have incorporated force sensors on the surgical tools to measure the tool-tissue interaction forces, and reproduce these forces at the surgeon console. However, the employment of …


Multifunctional Nanoparticles For Theranostic Applications, Supriya Srinivasan Jul 2015

Multifunctional Nanoparticles For Theranostic Applications, Supriya Srinivasan

FIU Electronic Theses and Dissertations

Multifunctional agents for the management of highly heterogeneous diseases, like cancer, are gaining increased interest with the intent of improving the diagnostics and therapy of cancer patients. These agents are also important because more than one treatment modality is typically used for cancer therapy in the clinic. Further, nanotechnology offers a platform where more than one agent can be combined to help provide improved cancer diagnosis and therapy. Near-infrared light-activatable phototherapeutic agents have great potential in vivo. Body tissues have minimum absorption in the near- infrared range. They also have been shown to enhance the cytotoxic effect of chemotherapeutic …


Synthesis And Characterization Of Nanostructured Nickel Diselenide Nise2 From The Decomposition Of Nickel Acetate, (Ch3co2)2ni, Ming Yin, Stephen O'Brien Aug 2014

Synthesis And Characterization Of Nanostructured Nickel Diselenide Nise2 From The Decomposition Of Nickel Acetate, (Ch3co2)2ni, Ming Yin, Stephen O'Brien

Publications and Research

Solution processed NiSe2 nanorods were synthesized by a modified colloidal synthesis technique, by chemical reaction of TOPSe and nickel acetate at 150 ∘C. The rods exist as an oleic acid ligand stabilized solution, with oleic acid acting as a capping group. Structural characterization by X-ray diffraction and transmission electron microscopy indicates that the particles are rod-like shaped crystals with a high and relatively constant aspect ratio (30 : 1). TEM shows that the width and the length of the nanorods are in the range 10–20nm and 300–350 nm, respectively. XRD indicates that the nanorods are pure and well crystallized. The …


Atomic Force Microscopy Characterization Of Collagen ‘Nanostraws’ In Human Costal Cartilage, Michael W. Stacey, Diganta Dutta, Anthony Asmar, H. Elsayed-Ali, R. Kelly Jr., A. Beskok Jan 2013

Atomic Force Microscopy Characterization Of Collagen ‘Nanostraws’ In Human Costal Cartilage, Michael W. Stacey, Diganta Dutta, Anthony Asmar, H. Elsayed-Ali, R. Kelly Jr., A. Beskok

Bioelectrics Publications

Costal cartilage, a type of hyaline cartilage that bridges the bony ribs and sternum, is relatively understudied compared to the load bearing cartilages. Deformities of costal cartilage can result in deformation of the chest wall, where the sternum is largely pushed toward or away from the spine, pectus excavatum and pectus carinatum, respectively, with each condition having significant clinical impact. In the absence of extensive literature describing morphological features of costal cartilage, we characterized a sample from the costal margin immunohistologically and through atomic force microscopy. We had previously observed the presence of collagen ‘nanostraws’ running the length of costal …