Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Engineering

Mathematical Modeling Of A Primary Zinc/Air Battery, Z. Mao, Ralph E. White Mar 2015

Mathematical Modeling Of A Primary Zinc/Air Battery, Z. Mao, Ralph E. White

Ralph E. White

The mathematical model developed by Sunu and Bennion has been extended to include the separator, precipitation of both solid ZnO and K2Zn(OH)4, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilizationis predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the anode material utilization and …


Governing Equations For Transport In Porous Electrodes, Pauline De Vidts, Ralph E. White Mar 2015

Governing Equations For Transport In Porous Electrodes, Pauline De Vidts, Ralph E. White

Ralph E. White

No abstract provided.


The Effect Of Particle Size On The Discharge Performance Of A Nickel-Metal Hydride Cell, Jussi M. Heikonen, Harry J. Ploehn, Ralph E. White Mar 2015

The Effect Of Particle Size On The Discharge Performance Of A Nickel-Metal Hydride Cell, Jussi M. Heikonen, Harry J. Ploehn, Ralph E. White

Ralph E. White

We investigate the effect of particle size on the discharge performance of a nickel-metal hydride cell with a mathematical model. Electrodes with uniform as well as with nonuniform particle sizes are studied. With uniform particle size, the dependence of the particle-to-particle resistance on the particle size is taken into account. The optimal particle size depends on the discharge rate. Moreover, we show that under certain conditions it is advantageous to use a nonuniform particle size. In general, the higher the discharge current density, the more the particle size affects the electrode performance.


Parameter Estimates For A Pemfc Cathode, Qingzhi Guo, Vijay A. Sethuraman, Ralph E. White Mar 2015

Parameter Estimates For A Pemfc Cathode, Qingzhi Guo, Vijay A. Sethuraman, Ralph E. White

Ralph E. White

Five parameters of a model of a polymer electrolyte membrane fuel cell (PEMFC) cathode (the volume fraction of gas pores in the gas diffusion layer, the volume fraction of gas pores in the catalyst layer, the exchange current density of the oxygen reduction reaction, the effective ionic conductivity of the electrolyte, and the ratio of the effective diffusion coefficient of oxygen in a flooded spherical agglomerate particle to the square of that particle radius) were determined by least-squares fitting of experimental polarization curves. The values of parameters obtained in this work indicate that ionic conduction and gas-phase transport are two …


Modeling Of A Nickel-Hydrogen Cell: Phase Reactions In The Nickel Active Material, B. Wu, Ralph E. White Mar 2015

Modeling Of A Nickel-Hydrogen Cell: Phase Reactions In The Nickel Active Material, B. Wu, Ralph E. White

Ralph E. White

No abstract provided.


Current Distribution In A Horizon® Lead-Acid Battery During Discharge, Z. Mao, Ralph E. White, B. Jay Mar 2015

Current Distribution In A Horizon® Lead-Acid Battery During Discharge, Z. Mao, Ralph E. White, B. Jay

Ralph E. White

A simple mathematical model is presented and used to analyze the potential and current distributions in a HORIZON® sealed lead-acid battery. It was found that an increase in the thickness of an electrode would not enhance the discharge rate of that electrode; instead, it causes the transfer current distribution to be less uniform in the electrode. Also, the ohmic drop across the separator would decrease with a decrease in the thickness of the separator more rapidly when the thickness is small than when it is large. In addition, it was found that efficient high-capacity, high-rate electrodes must consider the electrode …


Effect Of Porosity On The Capacity Fade Of A Lithium-Ion Battery: Theory, Godfrey Sikha, Branko N. Popov, Ralph E. White Mar 2015

Effect Of Porosity On The Capacity Fade Of A Lithium-Ion Battery: Theory, Godfrey Sikha, Branko N. Popov, Ralph E. White

Ralph E. White

A mathematical model is presented to predict the performance of a lithium-ion battery. It includes the changes in the porosity of the material due to the reversible intercalation processes and the irreversible parasitic reaction. The model was also extended to predict the capacity fade in a lithium-ion battery based on the unwanted parasitic reaction that consumes Li+ along with the changes in the porosities of the electrodes with cycling due to the continuous parasitic side reaction. The model can be used to predict the drop in the voltage profile, change in the state of charge, and the effects of charge …


Theoretical Analysis Of Metal Hydride Electrodes: Studies On Equilibrium Potential And Exchange Current Density, Bala S. Haran, Branko N. Popov, Ralph E. White Mar 2015

Theoretical Analysis Of Metal Hydride Electrodes: Studies On Equilibrium Potential And Exchange Current Density, Bala S. Haran, Branko N. Popov, Ralph E. White

Ralph E. White

A theoretical model for the metal hydride electrode has been developed assuming that hydrogen diffusion in the alloy and charge-transfer at the surface control the discharge process. Theoretical equations for the dependence of equilibrium potential and exchange current density on the surface hydrogen concentration have been derived. These parameters have been used to correlate experimental data with the theoretical electrode discharge model. Analysis of both the experimental and theoretical discharge curves reveals a potential plateau determined by the magnitude of the interactions between the hydrogen in the alloy and the unhydrided metal. Neglecting these hydrogen-metal site interactions results in simulations …


A Mathematical Model Of A Lithium/Thionyl Chloride Primary Cell, T. I. Evans, T. V. Nguyen, Ralph E. White Mar 2015

A Mathematical Model Of A Lithium/Thionyl Chloride Primary Cell, T. I. Evans, T. V. Nguyen, Ralph E. White

Ralph E. White

A one-dimensional mathematical model for the lithium/thionyl chloride primary cell has been developed to investigate methods of improving its performance and safety. The model includes many of the components of a typical lithium/thionyl chloride cell such as the porous lithium chloride film which forms on the lithium anode surface. The governing equations are formulated from fundamental conservation laws using porous electrode theory and concentrated solution theory. The model is used to predict one-dimensional, time dependent profiles of concentration, porosity, current, and potentialas well as cell temperature and voltage. When a certain discharge rate is required, the model can be used …


Electrochemical Characterization Of Electronically Conductive Polypyrrole On Cyclic Voltammograms, Taewhan Yeu, Ken-Ming Yin, Jose Carbajal, Ralph E. White Mar 2015

Electrochemical Characterization Of Electronically Conductive Polypyrrole On Cyclic Voltammograms, Taewhan Yeu, Ken-Ming Yin, Jose Carbajal, Ralph E. White

Ralph E. White

Experimental and theoretical cyclic voltammograms for electronically conducting polypyrrole film are obtained from the identical conditions and compared to each other to characterize electrochemical behavior of the polymer. A comparison of the simulated and experimental cyclic yoltammograms shows quantitative agreement. The profiles of the dependent variables show that the switching process is governed by the availability of the counter ion to the polypyrrole electrode and the amount of electroactive sites. Sensitivity analysis shows that the double layer effects have more influence in the cyclic voltammograms than the electrokinetic effects.


Modeling Lithium Intercalation In A Porous Carbon Electrode, Gerardine G. Botte, Ralph E. White Mar 2015

Modeling Lithium Intercalation In A Porous Carbon Electrode, Gerardine G. Botte, Ralph E. White

Ralph E. White

No abstract provided.


Electrochemical Investigations Of Cobalt-Doped Limn2O4 As Cathode Material For Lithium-Ion Batteries, P. Arora, Branko Popov, Ralph E. White Mar 2015

Electrochemical Investigations Of Cobalt-Doped Limn2O4 As Cathode Material For Lithium-Ion Batteries, P. Arora, Branko Popov, Ralph E. White

Ralph E. White

A wide range (y = 0.05–0.33) of Co-doped LiCoyMn2–yO4 spinels were synthesized and electrochemically characterized. These Co-doped spinels showed improved specific capacity and capacity retention over pure spinels. Electrochemical impedance spectroscopy and the linear polarization resistance technique were used to determine the transport and electrochemical kinetic parameters of Co-doped spinels. The presence of Co in the spinel inhibits the passivation process occurring on the surface of the cathode. Also, Co increases the exchange current density and facilitates the charge-transfer reaction of the active material. The lower self-discharge observed for Co-doped spinels was attributed …


Mathematical Modeling Of A Nickel-Cadmium Battery: Effects Of Intercalation And Oxygen Reactions, Deyuan Fan, Ralph E. White Mar 2015

Mathematical Modeling Of A Nickel-Cadmium Battery: Effects Of Intercalation And Oxygen Reactions, Deyuan Fan, Ralph E. White

Ralph E. White

Extensions are presented for a previously published (1) mathematical model of a nickel-cadmium (Ni-Cd) cell. These extensions consist of intercalation thermodynamics for the nickel electrode and oxygen generation and reduction reactions during charge and overcharge. The simulated results indicate that intercalation may be important in the nickel electrode and that including the oxygen reactions provides a means of predicting the efficiency of the cell on charge and discharge.


A Mathematical Model For The Initial Corrosion Rate Of A Porous Layer On A Rotating Disk Electrode, William E. Ryan, Ralph E. White, S. L. Kelly Mar 2015

A Mathematical Model For The Initial Corrosion Rate Of A Porous Layer On A Rotating Disk Electrode, William E. Ryan, Ralph E. White, S. L. Kelly

Ralph E. White

A mathematical model is presented for the initial corrosion rate of a porous layer on a rotating disk electrode. The model is used to predict the corrosion potential and corrosion current density for a porous electrode made of pure iron in aerated caustic solutions. The dependence of these predictions on some of the properties of the porous layer is presented. It is shown that the corrosion rate depends significantly on the specific surface area of the porous electrode.


Estimation Of Electrode Kinetic Parameters Of The Lithium/Thionyl Chloride Cell Using A Mathematical Model, T. I. Evans, Ralph E. White Mar 2015

Estimation Of Electrode Kinetic Parameters Of The Lithium/Thionyl Chloride Cell Using A Mathematical Model, T. I. Evans, Ralph E. White

Ralph E. White

A one-dimensional mathematical model for the lithium/thionyl chloride primary cell is used in conjunction with a parameter estimation technique, in order to estimate the electrode kinetic parameters of this electrochemical system. The electrode kinetic parameters include the anodic transfer coefficient and exchange current density of the lithium oxidation, a,1 and i0,1,ref; the cathodic transfer coefficient and the effective exchange current density of the thionyl chloride reduction, c,4 and a0i0,4,ref, and a morphology parameter, . The parameter estimation is performed on simulated data first in order to gain confidence in the method. Data reported in the literature for a high-rate discharge …


Anomalous Codeposition Of Fe-Ni Alloys And Fe-Ni-Sio2 Composites Under Potentiostatic Conditions, M. Ramasubramanian, S. N. Popova, Branko N. Popov, Ralph E. White, K. M. Yin Mar 2015

Anomalous Codeposition Of Fe-Ni Alloys And Fe-Ni-Sio2 Composites Under Potentiostatic Conditions, M. Ramasubramanian, S. N. Popova, Branko N. Popov, Ralph E. White, K. M. Yin

Ralph E. White

A mathematical model has been developed to describe the electrodeposition of Fe-Ni alloys and Fe-Ni-SiO2 composites under potentiostatic conditions. This model can be used to predict the polarization behavior, partial current densities, and alloy composition of each of the components as a function of the applied potential. Fe-Ni-SiO2 samples were deposited on platinum rotating disk electrodes from sulfate electrolytes under potentiostatic conditions, and the results obtained were compared to the model. The model predictions were found to agree well with the experimental observations for the Fe-Ni and Fe-Ni-SiO2 systems.


A Mathematical Model Of The Self-Discharge Of A Ni-H2 Battery, Z. Mao, Ralph E. White Mar 2015

A Mathematical Model Of The Self-Discharge Of A Ni-H2 Battery, Z. Mao, Ralph E. White

Ralph E. White

A simple mathematical model is presented and used to characterize the self-discharge of a nickel oxyhydroxide(NiOOH) electrode in a hydrogen environment. This model includes diffusion of dissolved hydrogen in an electrolyte film which covers a flooded electrode, electrochemical oxidation of hydrogen, reduction of nickel oxyhydroxide, and changes of surface area and of porosity of the electrode during the self-discharge process. Although the self-discharge process is complicated, the predictions of the model are consistent with experimental results reported in the literature, which include linear relationships between the logarithm of hydrogen pressure and time and between the logarithm of the capacity remaining …


La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen Mar 2015

La0.85Sr0.15Mno3− Infiltrated Y0.5Bi1.5O3 Cathodes For Intermediate-Temperature Solid Oxide Fuel Cells, Jiang Zhiyi, Changrong Xia, Fei Zhao, Fanglin Chen

Fanglin Chen

Porous yttria-stabilized bismuth oxides (YSB) were investigated as the backbones for La0.85Sr0.15MnO3−#1;(LSM) infiltrated cathodes in intermediate-temperature solid oxide fuel cells. The cathodes were evaluated using anode-supported single cells with scandia-stabilized zirconia as the electrolytes. With humidified H2 as the fuel, the cell showed peak power density of 0.33, 0.52, and 0.74 W cm−2 at 650, 700, and 750°C, respectively. At 650°C, the cell polarization resistance was only 1.38 Ω cm2, <50% of the lowest value previously reported, indicating that YSB is a promising backbone for the LSM infiltrated cathode.


Characterization Of Sr‐Doped Lamno3 And Lacoo3 As Cathode Materials For A Doped Lagao3 Ceramic Fuel Cell, Kevin Huang, Man Feng, John B. Goodenough, Michael Schmerling Feb 2015

Characterization Of Sr‐Doped Lamno3 And Lacoo3 As Cathode Materials For A Doped Lagao3 Ceramic Fuel Cell, Kevin Huang, Man Feng, John B. Goodenough, Michael Schmerling

Kevin Huang

Energy dispersive spectrometry line scan and ac impedance spectroscopy were used in this study to investigate the chemical reactions between two cathode materials, La0.84Sr0.16MnO3 (LSM), La0.5Sr0.5CoO3-δ (LSC), and the electrolyte La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM). Significant interdiffusions of Co into LSGM and Ga into LSC were found at an LSC/LSGM interface even at relatively low fabrication temperatures. In contrast, only small interdiffusions of Mn into LSGM and Ga into LSM were detected at the LSM/LSGM interface even though it was fired at 1470°C. The …


Sr‐ And Ni‐Doped Lacoo3 And Lafeo3 Perovskites: New Cathode Materials For Solid‐Oxide Fuel Cells, Kevin Huang, Hee Y. Lee, John B. Goodenough Feb 2015

Sr‐ And Ni‐Doped Lacoo3 And Lafeo3 Perovskites: New Cathode Materials For Solid‐Oxide Fuel Cells, Kevin Huang, Hee Y. Lee, John B. Goodenough

Kevin Huang

An improved cathode material for a solid‐oxide fuel cell would be a mixed electronic and oxide‐ion conductor with a good catalytic activity for oxygen reduction at an operating temperature T op ≥ 700°C and a thermal expansion matched to that of the electrolyte and interconnect. We report on the properties of Sr‐ and Ni‐doped LaCoO3 and LaFeO3 perovskites that meet these criteria. Single‐phase regions were determined by X‐ray diffraction, and thermogravimetric analysis measurements were used to obtain the temperatures above which oxygen loss, and hence oxide‐ion conductivity, occurs. The conductivity and Seebeck measurements indicate the coexistence of both …


Increasing Power Density Of Lsgm-Based Solid Oxide Fuel Cells Using New Anode Materials, Kevin Huang, Jen-Hau Wan, John Goodenough Feb 2015

Increasing Power Density Of Lsgm-Based Solid Oxide Fuel Cells Using New Anode Materials, Kevin Huang, Jen-Hau Wan, John Goodenough

Kevin Huang

Chemical reactions between the superior perovskite oxide-ion conductor Sr- and Mg-doped LaGaO3 (LSGM), CeO2, and NiO have been studied by powder X-ray diffraction. The results showed that an extensive reactivity occurs as a result of La migration driven by a gradient of La chemical activity. La migration across the LSGM/electrode interfaces in a fuel cell leads to the formation of resistive phases at the interface, either LaSrGa3O7 or LaSrGaO4. Use of 40 mol % La2O3 -doped CeO2 as an interlayer between anode and electrolyte as well as in the NiO-containing anode prevents all reactions found. Consequently, the air-H2 cell maximum …


Electrode Performance Test On Single Ceramic Fuel Cells Using As Electrolyte Sr‐ And Mg‐Doped Lagao3, Kevin Huang, Man Feng, John Goodenough, Christopher Milliken Feb 2015

Electrode Performance Test On Single Ceramic Fuel Cells Using As Electrolyte Sr‐ And Mg‐Doped Lagao3, Kevin Huang, Man Feng, John Goodenough, Christopher Milliken

Kevin Huang

The electrode performance of a single solid oxide fuel cell was evaluated using a 500 μm thick La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) as the electrolyte membrane. Comparison of La0.6Sr0.4CoO3-δ (LSCo) and La0.9Sr0.1MnO3 (LSM) as cathodes showed LSCo gave an exchange current density two orders of magnitude higher than that of LSM. Comparison of CeO2/Ni and LSGM/Ni as anodes showed a degradation of the latter with time, and studies of the anode‐electrolyte interface and the reactivity of NiO and LSGM suggest better anode …