Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Conference

The Summer Undergraduate Research Fellowship (SURF) Symposium

Materials Science and Engineering

Materials

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Exploring The Effect Of Sample Properties On Spark-Induced Breakdown Spectroscopy, Michael J. Marino, Payson Dieffenbach, Liesl A. Krause, Prasoon Diwakar, Ahmed Hassanein Aug 2015

Exploring The Effect Of Sample Properties On Spark-Induced Breakdown Spectroscopy, Michael J. Marino, Payson Dieffenbach, Liesl A. Krause, Prasoon Diwakar, Ahmed Hassanein

The Summer Undergraduate Research Fellowship (SURF) Symposium

Optical emission spectroscopy techniques such as laser-induced breakdown spectroscopy (LIBS) and spark-induced breakdown spectroscopy (SIBS) provide portable and robust methods for elemental detection in real-time. Laser-produced emissions are then used for quantitative and qualitative analysis of a sample material with applications in explosives detection. For both techniques, the main obstacles have always been signal intensity, accuracy, and sensitivity of detection. The main advantage of the SIBS method is more safe operation, while still maintaining the portability of the technique. In this study, detailed characterization of spark induced plasma, analyte emission intensity, plasma temperature, electron density, and plasma persistence has been …


Crack Propagation Simulation Tool, Nilofer Rajpurkar, Hojin Kim, Alejandro Strachan Aug 2014

Crack Propagation Simulation Tool, Nilofer Rajpurkar, Hojin Kim, Alejandro Strachan

The Summer Undergraduate Research Fellowship (SURF) Symposium

In the massively engineered world that exists today, understanding material behavior is of paramount importance in caring for human safety in design. Molecular dynamic simulations on crack propagation through materials allow visualization of material behavior under stress. The tool, developed by the nanoHUB group as a part of the Network for Computational Nanotechnology at Purdue University, makes performing such simulations accessible to undergraduate students, highly qualified researchers, and all those in between. First, the input deck for the simulation parameters was simplified from the complex, language-specific code into a simple, user-friendly Graphic User Interface (GUI). Several interesting example cases were …