Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Conference

The Summer Undergraduate Research Fellowship (SURF) Symposium

Chemical Engineering

Shale gas

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Electronic Effect Of Platinum Alloy Catalysts On Olefin Hydrogenation Kinetics, Colin Reedy, Jeff Miller, Stephen Purdy Aug 2018

Electronic Effect Of Platinum Alloy Catalysts On Olefin Hydrogenation Kinetics, Colin Reedy, Jeff Miller, Stephen Purdy

The Summer Undergraduate Research Fellowship (SURF) Symposium

Dehydrogenation of alkanes is the first step in transforming light hydrocarbons into liquid fuels and chemicals. This process has traditionally used platinum alloys as catalysts. Alloys are used industrially because they have a greater selectivity than monometallic platinum. Alloying platinum with an inactive promoter modifies the crystalline structure of the surface (geometric effect), and the 5d electrons in platinum responsible for chemistry (electronic effect); both have been suggested to be primarily responsible for dehydrogenation selectivity in platinum alloys. Alloy catalysts have been synthesized using early 3d transition metal promoters with the same Pt3M crystal structure. X-Ray Absorption Spectroscopy …


Platinum-Gallium (Pt-Ga) Intermetallic Alloys For Propane Dehydrogenation, Brittany K. Roopnarine, Nicole J. Libretto, Johnny Zhuchen, Zhenwei Wu, Evan Wegener, Griffin Canning, Abhaya K. Datye, Jeffrey T. Miller Aug 2018

Platinum-Gallium (Pt-Ga) Intermetallic Alloys For Propane Dehydrogenation, Brittany K. Roopnarine, Nicole J. Libretto, Johnny Zhuchen, Zhenwei Wu, Evan Wegener, Griffin Canning, Abhaya K. Datye, Jeffrey T. Miller

The Summer Undergraduate Research Fellowship (SURF) Symposium

Natural gas is a source of energy for the United States. The Center for Innovative Strategic Transformation of Alkane Resources (CISTAR) plans to use shale gas extracted from shale rock formations as a bridge fuel to replace coal and oil while the US transitions to renewable energy like solar and wind. After methane, the largest components in shale gas are light alkanes such as ethane and propane. These can be catalytically converted to olefins, which can be further reacted to produce fuels, for example. Olefins from alkanes can be accomplished by dehydrogenation by promoted platinum alloys. This study compares the …