Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Conference

Kennesaw State University

Materials Science and Engineering

Publication Year

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Raman Spectroscopy Of Gan On Si With Varied Thin Film Thickness For High-Temperature Semiconductor Devices, Manika Tun Nafisa Mar 2024

Raman Spectroscopy Of Gan On Si With Varied Thin Film Thickness For High-Temperature Semiconductor Devices, Manika Tun Nafisa

Symposium of Student Scholars

This study explores the potential of GaN on Si thin films as a promising material for high-temperature semiconductor devices, owing to its impressive thermal properties and performance characteristics. Two GaN on Si samples were grown using Metal Organic Chemical Vapor Deposition (MOCVD), with different film thicknesses, and their potential for high-temperature applications was comprehensively assessed by performing Raman spectroscopy at various temperature levels. The experimental results provided valuable insights into the material's behavior at elevated temperatures. At 300°C, the GaN E2 (High) peak showed a Raman shift at 562.38 cm⁻¹ for high-thickness samples and 561.49 cm⁻¹ for low-thickness samples. …


Nanocomposites For Applications In Ultracapacitors Based Energy Storage Systems, Duy Pham, Jake Ivirn, Jacob Dileonardi, Ben Mckinney, Ashish Aphale Dec 2022

Nanocomposites For Applications In Ultracapacitors Based Energy Storage Systems, Duy Pham, Jake Ivirn, Jacob Dileonardi, Ben Mckinney, Ashish Aphale

Symposium of Student Scholars

Electrochemical capacitors also known as ultracapacitor is a potential technology for modern energy storage due to their high performance of charge capacity and fast charge-discharge rates. The superior performance of ultracapacitors will help to meet demands for energy systems in applications such as transportation. Ultracapacitor device consists of electrodes, a polymeric separator, and an electrolyte. Under the applied voltage, the migration of ions between two porous electrodes from the bulk of the electrolyte governs the performance of such devices. In this work, we present experimental research on the synthesis of different electrode materials using atomically thick graphene and conducting polymers. …


Development Of Electrochemical Sensors For The Detection Of Trace Contaminants, Quang Lam, Ashish Aphale, Duy Pham Dec 2022

Development Of Electrochemical Sensors For The Detection Of Trace Contaminants, Quang Lam, Ashish Aphale, Duy Pham

Symposium of Student Scholars

Several industrial processes, such as stainless steel fabrication and textiles, produce heavy metal byproducts such as chromium. These heavy metals have detrimental effects on the surrounding environments and humans. Recently, electrochemical-driven sensors have been studied and show great potential in miniaturization while still providing measurements at a low cost. In addition, atomically thin allotropes of carbon, graphene, and graphene oxide have shown remarkable results in producing a highly responsive and selective sensor platform. These results are due to their excellent electrical conductivity, high surface area for utility, and physicochemical stability. The existing challenge for electrochemical-driven sensors is understanding the molecular …


Detection Of Trace Heavy Metals In Water: Development Of Electrochemical Sensors, Quang Lam, Joel Mututeke Apr 2022

Detection Of Trace Heavy Metals In Water: Development Of Electrochemical Sensors, Quang Lam, Joel Mututeke

Symposium of Student Scholars

The presence of heavy metals in our ecosystem poses significant ecological and physiological consequences. As a result, numerous techniques are developed for the detection of contaminants in aqueous solutions. However, early and trace detection of such contaminants still remains a challenge. Amongst many techniques, electrochemistry driven sensors have shown promise due to their possibility of miniaturization and low-cost. Our research investigates the use of electrically conducting polymer and atomically thin carbon materials as electrodes towards the development of electrochemical sensor. Nanocomposite electrode films have been synthesized and fabricated using in-situ polymerization technique and the relationship between number of cycles of …


Novel Thermal Coating For High-Speed Airplanes, Abinash Satapathy, Lakshay Battu, Liam Watson, Nazanin Rajabi Apr 2022

Novel Thermal Coating For High-Speed Airplanes, Abinash Satapathy, Lakshay Battu, Liam Watson, Nazanin Rajabi

Symposium of Student Scholars

In comparison to various other materials, Carbon Fiber, specifically Carbon Fiber Reinforced Polymers (CFRP), is pre-eminent amongst other materials for use on aeronautical systems. Due to its high specific strength (strength-to-weight ratio), CFRP is prominent for carrying heavy loads while maintaining a lightweight build. However, when influenced by heat resulting from air resistance, CFRP is known to undergo serious degradation that would significantly decrease the effectiveness of the polymers. To prevent this degradation and maintain the strength of the CFRP, thermal protective layers (TPLs) are designed to shield the CFRP from heat exposure. This research is focused on the examination …


Atomistic Simulation Of Desalination, Ian David Durr Aug 2021

Atomistic Simulation Of Desalination, Ian David Durr

Symposium of Student Scholars

Atomistic Simulation of Desalination

Ian Durr, Matheus Prates, and Jungkyu Park

Kennesaw State University

In this research, we investigate the desalination capacity of three-dimensional (3D) carbon nanostructures using molecular dynamics simulations. 3D carbon nanostructures proposed here will filter seawater efficiently because of their multiple layers with holes of tunable sizes. The structure is designed to be flexible, allowing mechanical deformation during daily use. The 3D carbon nanostructure will still possess high thermal conductivity, enabling easy recycle through a simple heating process. Here, we employ LAMMPS, Large-scale Atomic/MolecularMassively Parallel Simulator distributed by Sandia National Laboratories to measure salt ion flux through …


Sound, Material And Strength Correlation, Ryan Mcbride May 2021

Sound, Material And Strength Correlation, Ryan Mcbride

Symposium of Student Scholars

With a growing amount of manufacturing utilizing 3D printing, there is a correlation between strength and material which can affect sound produced by sirens. An air raid siren that has been downloaded from Thingiverse.com spins with a 49:1 gear ratio to produce 2 tone sounds and with that large number of revolutions comes friction, and in order to create a 3D printed air raid siren, the siren must be made out of a material that can withstand high temperatures without melting and quick rotations without delaminating. There are many materials that can be printed to withstand those forces, but it …


Crystal Nucleation Of Palladium-Doped Lithium Disilicate Glass, Gregory Humble Apr 2015

Crystal Nucleation Of Palladium-Doped Lithium Disilicate Glass, Gregory Humble

Symposium of Student Scholars

The effect of concentration of palladium particles on crystal nucleation was investigated for lithium disilicate glass. The heterogeneous nucleation rate for 470°C and 480°C were calculated for a concentration of 0.001% palladium by weight. The DTA method of measuring nucleation and crystallization was used in this calculation.