Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Engineering

Computational Sodium Heat Pipe Simulation In Three Dimensions For Transient Nuclear Reactor Analysis With Variable Surface Heat Flux, Valerie Jean Lawdensky Dec 2021

Computational Sodium Heat Pipe Simulation In Three Dimensions For Transient Nuclear Reactor Analysis With Variable Surface Heat Flux, Valerie Jean Lawdensky

UNLV Theses, Dissertations, Professional Papers, and Capstones

Heat pipes are used to transfer heat through phase change in a liquid/vapor contained in a metal tube. They are passive devices that require no pumps to circulate the fluid and can transfer heat far more efficiently than a solid copper rod of the same diameter. They are commonly used in laptop computers where copper heat pipes filled with water take heat away from the CPU and transfer the heat to air through a heat exchanger. Heat pipes were also used in the Kilopower nuclear reactor where higher temperatures required sodium as the working fluid with stainless steel tubes. Computer …


Degradation Of Antibiotics In Aqueous Phase Using Pms Catalytic Decomposition With Zero-Valent Iron Nanoparticles Immobilized In Sba-15, Ahdee Bluma Zeidman May 2021

Degradation Of Antibiotics In Aqueous Phase Using Pms Catalytic Decomposition With Zero-Valent Iron Nanoparticles Immobilized In Sba-15, Ahdee Bluma Zeidman

UNLV Theses, Dissertations, Professional Papers, and Capstones

Zero-valent iron nanoparticles (nZVI) have been studied as an option for soil remediation and water treatment for many years. The capability of nZVI to produce oxidation/reduction processes, depending on the reaction conditions, has attracted great interest with their major drawback being reactivity loss through agglomeration. The loss in nZVI surface area has been reported to be prevented through immobilization onto a porous media (e.g., SBA-15, MCM-41, or zeolites). In this work, a mesoporous silica structure (SBA-15) is used as an nZVI supporting material to enhance its reactivity and promote peroxymonosulfate (PMS) catalytic decomposition for the degradation of antibiotics in aqueous …


Numerical And Experimental Analysis Of Air-Cooled Condensers, Kaipo Kekaula May 2020

Numerical And Experimental Analysis Of Air-Cooled Condensers, Kaipo Kekaula

UNLV Theses, Dissertations, Professional Papers, and Capstones

The scope of this project is to numerically and experimentally dry cooling process in air-cooled condensers (ACCs) designed for concentrated solar power (CSP) applications. This effort is driven by the growing economic and political pressure to reduce water consumption during power generation due to limited water resources in the arid geographic climate of the southwestern United States. A computational approach is used in conjunction with experimental validation to gain a more complete understanding of these systems.

Traditionally research into ACCs have been largely limited to air-side heat transfer modelling as it accounts for a large portion of the total thermal …


Cfd Simulation Investigating The Effects Of Groove Geometry On Heat Transfer For Internally Grooved Tubes, Richard Zaven Saroukhanoff Dec 2019

Cfd Simulation Investigating The Effects Of Groove Geometry On Heat Transfer For Internally Grooved Tubes, Richard Zaven Saroukhanoff

UNLV Theses, Dissertations, Professional Papers, and Capstones

This numerical study investigates the thermal performance of internally grooved tubes used in heat exchangers. In order to enhance the performance of heat exchangers, turbulence promoters are inserted along the streamwise flow. The use of inserts, grooves, and augmentations along the axial length of the tube creates disturbances that improve the overall heat transfer due to enhanced fluid mixing and greater surface contact boundary walls. However, the implementation of tube wall augmentations creates an increase in pressure drop across the tube which must be compensated for with additional pumping power for the working fluid. Therefore, in order to analyze the …


Performance Modeling Of Supercritical Carbon Dioxide Zigzag-Channel Printed Circuit Heat Exchangers, Katrine Birgitte Bennett Dec 2019

Performance Modeling Of Supercritical Carbon Dioxide Zigzag-Channel Printed Circuit Heat Exchangers, Katrine Birgitte Bennett

UNLV Theses, Dissertations, Professional Papers, and Capstones

Supercritical carbon dioxide (sCO2) is currently being studied as the working fluid in power producing Brayton cycles due to its excellent physical and thermodynamic properties, especially near the critical point. Printed circuit heat exchangers (PCHEs) are being considered for use as condensers and recuperators for this purpose due to their high strength and compact designs. Many experimental and numerical studies are being conducted to characterize and optimize sCO2 PCHE operation and develop correlations to describe their thermal-hydraulic performance. Additionally, a few experimental and numerical structural assessments of these PCHEs have been conducted, but all have been somewhat limited due to …


Numerical Study Of Spacer Grid Geometry In A 5 X 5 Nuclear Fuel Rod Bundle, Wan Chuan Fan May 2019

Numerical Study Of Spacer Grid Geometry In A 5 X 5 Nuclear Fuel Rod Bundle, Wan Chuan Fan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Reactor fuel rod bundles serve as the primary heat source in light water reactors (LWRs), commonly found in the aforementioned PWR plants. The fuel rod bundles’ structure consists of a collection of fuel rods put into a parallel grid configuration. The bundles also include fuel rod spacers, which hold the fuel rods in place, in accordance with the grid. Repeating structures of the fuel bundles create the meta-structure in the reactor. In other words, the grid configuration repeats until it fills the entire space of the reactor. This results in reactor fuel rods suspended in the working fluid domain, oriented …


Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu Dec 2018

Cfd Modeling Of Smoke Movement In An Atrium, Robin Wu

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this paper is to better understand the behavior of smoke movement in an atrium. Thus gives first responders and civilians in and out of building a better understanding

With the advancements of modern technology, computers and softwares make simulation models possible such as fire models to simulate fire and smoke movements. In this paper, a computational fluid dynamic (CFD) software Fire Dynamic Simulator (FDS) is used to conduct a series of atrium tests to investigate the effectiveness of smoke exhaust systems. FDS solves the Navier-Stokes equations appropriate for low speed flows (Ma < 0.3) with an emphasis on smoke, heat transport and CO2 concentrations from fires. The default turbulence model used in FDS simulation is the Large Eddy Simulation (LES), which is the solution of Navier-Stokes equations at low speed.

The compartment tested was 9 …


Numerical Characterization Of The Flow Field And Heat Transfer Inside The Receiver Of A Parabolic Trough Solar Collector Carrying Supercritical Co2, Samad Gharehdaghimollahajloo Dec 2017

Numerical Characterization Of The Flow Field And Heat Transfer Inside The Receiver Of A Parabolic Trough Solar Collector Carrying Supercritical Co2, Samad Gharehdaghimollahajloo

UNLV Theses, Dissertations, Professional Papers, and Capstones

The aim of this research is to provide a detailed numerical analysis of flow field and heat transfer inside the heat collecting element of a parabolic trough collector. The parabolic trough collector is used as the boiler in a direct Super Critical Carbon Dioxide (S-CO2) Brayton cycle.

A single collector is modeled and analyzed with different inlet conditions. The working fluid is supercritical since its pressure is increased to above critical pressure in the compressor while its temperature reaches 300 °C after passing through the recuperators and before entering the solar field. For the first time, this research considers both …


Study Of Water Transport Phenomena On Cathode Of Pemfcs Using Monte Carlo Simulation, Karn Soontrapa May 2014

Study Of Water Transport Phenomena On Cathode Of Pemfcs Using Monte Carlo Simulation, Karn Soontrapa

UNLV Theses, Dissertations, Professional Papers, and Capstones

This dissertation deals with the development of a three-dimensional computational model of water transport phenomena in the cathode catalyst layer (CCL) of PEMFCs. The catalyst layer in the numerical simulation was developed using the optimized sphere packing algorithm. The optimization technique named the adaptive random search technique (ARSET) was employed in this packing algorithm. The ARSET algorithm will generate the initial location of spheres and allow them to move in the random direction with the variable moving distance, randomly selected from the sampling range, based on the Lennard-jones potential of the current and new configuration. The solid fraction values obtained …


Simulations Of Interfacial Electrokinetics With Applications To Microfluidic Systems, Sebastian Uppapalli May 2014

Simulations Of Interfacial Electrokinetics With Applications To Microfluidic Systems, Sebastian Uppapalli

UNLV Theses, Dissertations, Professional Papers, and Capstones

Electrokinetics plays an important role in facilitating fluid transport and particle manipulation in microfluidic systems. This dissertation studies the mechanics of electrokinetic phenomena for microscale particles and drops. The work aims to increase the understanding of complex electrokinetic phenomena for applications in Lab-on-Chip technology, assembly of colloidal particles and two-phase flow sensing. The standard model consisting of the Poisson-Nernst-Planck equations is used to study the electric double layer polarization of charged dielectric particles and channel wall which plays a major role in control and manipulation of colloidal particles and understanding of electrohydrodynamic flow field.

The cases of polarization of "soft" …


Investigating The Feasibility Of Growing Algae For Fuel In Southern Nevada, Faegheh Moazeni May 2013

Investigating The Feasibility Of Growing Algae For Fuel In Southern Nevada, Faegheh Moazeni

UNLV Theses, Dissertations, Professional Papers, and Capstones

Microalgae capable of growing in waste are adequate to be mass-cultivated for biodiesel, avoiding fertilizers and clean water, two obstacles to sustainability of the feedstock production. This study replaces fertilizers and clean water with waste products. The investigated wastes include (1) the liquid fraction of sewage after solids and particles are removed, known as centrate, and (2) algal biomass residue, i.e. the algae remaining at the end of the lipids extraction process at biofuel plants. These wastes contain sufficient amount of nitrogen and phosphorus required for algal growth. This study proposes a system in which centrate would be used as …


Traffic Safety: Modeling, Analysis And Visualization, Puneet Lakhanpal Aug 2011

Traffic Safety: Modeling, Analysis And Visualization, Puneet Lakhanpal

UNLV Theses, Dissertations, Professional Papers, and Capstones

Traffic Safety has always been one of the major issues of concern in United States. Every year, stringent efforts are made by the national agencies and safety offices to uplift the traffic safety standards and build systems which can guide them in policy making, reducing crashes and routing the financial resources in an optimal direction. This thesis studies the traffic safety from three different angles: modeling, analysis and visualization. In the beginning, these three components are explored in the domain of Injury Severity. Later on, the focus is shifted towards the Traffic Safety related to Safety Belts. Factors and models …


Self-Assembling Organic Semiconductors With Tunable Electronic Properties Based On Novel Asymmetric Phenazine And Bisphenazine, Kyoungmi Jang May 2011

Self-Assembling Organic Semiconductors With Tunable Electronic Properties Based On Novel Asymmetric Phenazine And Bisphenazine, Kyoungmi Jang

UNLV Theses, Dissertations, Professional Papers, and Capstones

Current demands in the area of organic semiconductors focus on both electronic and self-assembling properties. Particularly, one-dimensionally grown nanostructures of small organic semiconductors have drawn much attention for nanodevice fabrication. Self-assembly through various intermolecular interactions has been widely used to produce one-dimensionally grown nanostructures which can be induced by various methods such as rapid solution dispersion, a phase transfer method, vapor annealing, crystallization, and organogelation in conjunction with proper molecular design. Controlling the morphology of the nanostructures plays an important role in achieving desirable properties in optoelectronic device applications. While significant advancements have been made in developing molecular architectures for …


Study Of Secondary Electron Emission From Niobium At Cryogenic Temperatures, Anoop George Aug 2005

Study Of Secondary Electron Emission From Niobium At Cryogenic Temperatures, Anoop George

UNLV Theses, Dissertations, Professional Papers, and Capstones

The objective of this project is to study the properties of secondary electron emission from niobium samples, cleaned at the Los Alamos National Laboratory, at cryogenic temperatures to enhance existing multipacting codes with data on the samples. The predominant cause of power loss in radio-frequency superconducting accelerators cavities is multipacting. This project studies the secondary electron distribution from niobium metal due to incident primary electrons. The experiments on the niobium sample are performed in an environment close to that present in a superconducting accelerator cavity.

The experiment is performed in a vacuum chamber capable of achieving ultra high vacuum levels …


Design And Simulation Of An Induction Skull Melting System, Taide Tan May 2004

Design And Simulation Of An Induction Skull Melting System, Taide Tan

UNLV Theses, Dissertations, Professional Papers, and Capstones

Incorporating volatile actinides, mainly americium into a metallic fuel pin (MFP) has been a serious problem due to americium’s high vapor pressure. An Induction Skull Melting (ISM) system was identified by Argonne National Laboratory (ANL) as a potential furnace design to cast MFPs. Through the development of the ISM system, the nuclear waste feedstock can be melted and injected into the mold for fabricating MFPs in the advanced nuclear fuel cycles. The main phenomena in this system include: induction melting process, casting process and mass transfer process of americium. Issues related to ISM system design for casting MFPs are discussed …


Modeling And Simulation Of The Chemical Etching Process In Niobium Cavities, Qin Xue Aug 2002

Modeling And Simulation Of The Chemical Etching Process In Niobium Cavities, Qin Xue

UNLV Theses, Dissertations, Professional Papers, and Capstones

Niobium Cavities are important parts of the integrated NC/SC high-power linear accelerator (linac) that can accelerate over 100 mA of protons to several GeV. Surface finish of the niobium cavity plays an important role of achieving the best performance of niobium cavity. The chemical etching techniques have been widely used.

Chemical etching of the inner surface of the cavity is achieved by circulating acid through it. The acid interacts with the surface and eliminates imperfections. During the etching process, a pipe with baffles is inserted within the cavity to direct the flow along the surfaces.

A 2-D, axisymmetric, steady state, …


Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Xiaolong Wu Aug 2002

Design And Analysis For Melt Casting Metallic Fuel Pins Incorporating Volatile Actinides, Xiaolong Wu

UNLV Theses, Dissertations, Professional Papers, and Capstones

Fundamental issues related to the selection of a metallic fuel casting furnace design are presented and discussed including heating mechanisms, casting issues, crucible design, and issues related to the mass transport of americium. The process of evaluating all of these different criteria is undertaken to select a concept that would have the greatest chance of success for casting americium in a metallic fuel rod. Based on this evaluation process, a concept for the casting of metallic fuel pins containing high vapor pressure materials is selected and discussed. The important physics of this concept include mass transport of americium from the …