Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Ralph E. White

Selected Works

2015

Nickel compounds

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Determination Of Transport And Electrochemical Kinetic Parameters Of Bare And Copper-Coated Lani4.27Sn0.24 Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White Mar 2015

Determination Of Transport And Electrochemical Kinetic Parameters Of Bare And Copper-Coated Lani4.27Sn0.24 Electrodes In Alkaline Solution, G. Zheng, Branko N. Popov, Ralph E. White

Ralph E. White

Electrochemical properties of bare and copper-coated LaNi4.27Sn0.24 electrodes were investigated in alkaline solution. The exchange current density, polarization resistance, and equilibrium potential were determined as functions of the state of charge in the electrodes. The symmetry factors for bare and copper-coated electrodes were estimated to be 0.53 and 0.52, respectively. By using a constant current discharge technique, the hydrogen diffusion coefficient in bare and coated LaNi4.27Sn0.24 was estimated to be 6.75 × 10–11 cm2/s.


Mathematical Modeling Of A Nickel-Cadmium Battery: Effects Of Intercalation And Oxygen Reactions, Deyuan Fan, Ralph E. White Mar 2015

Mathematical Modeling Of A Nickel-Cadmium Battery: Effects Of Intercalation And Oxygen Reactions, Deyuan Fan, Ralph E. White

Ralph E. White

Extensions are presented for a previously published (1) mathematical model of a nickel-cadmium (Ni-Cd) cell. These extensions consist of intercalation thermodynamics for the nickel electrode and oxygen generation and reduction reactions during charge and overcharge. The simulated results indicate that intercalation may be important in the nickel electrode and that including the oxygen reactions provides a means of predicting the efficiency of the cell on charge and discharge.


A Mathematical Model Of The Self-Discharge Of A Ni-H2 Battery, Z. Mao, Ralph E. White Mar 2015

A Mathematical Model Of The Self-Discharge Of A Ni-H2 Battery, Z. Mao, Ralph E. White

Ralph E. White

A simple mathematical model is presented and used to characterize the self-discharge of a nickel oxyhydroxide(NiOOH) electrode in a hydrogen environment. This model includes diffusion of dissolved hydrogen in an electrolyte film which covers a flooded electrode, electrochemical oxidation of hydrogen, reduction of nickel oxyhydroxide, and changes of surface area and of porosity of the electrode during the self-discharge process. Although the self-discharge process is complicated, the predictions of the model are consistent with experimental results reported in the literature, which include linear relationships between the logarithm of hydrogen pressure and time and between the logarithm of the capacity remaining …