Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering

Utilizing Uas To Support Wildlife Hazard Management Efforts By Airport Operators, Flavio A. C. Mendonca, Ryan Wallace Dec 2021

Utilizing Uas To Support Wildlife Hazard Management Efforts By Airport Operators, Flavio A. C. Mendonca, Ryan Wallace

Publications

The FAA requires airports operating under the Code of Federal Regulations Part 139 to conduct a wildlife hazard assessment (WHA) when some wildlife-strike events have occurred at or near the airport. The WHA should be conducted by a Qualified Airport Wildlife Biologist (QAWB) and must contain several elements, including the identification of the wildlife species observed and their numbers; local movements; daily and seasonal occurrences; and the identification and location of features on and near the airport that could attract wildlife. Habitats and land-use practices at and around the airport are key factors affecting wildlife species and the size of …


Utilizing Uas To Support Wildlife Hazard Management Efforts By Airport Operators, Flavio A. C. Mendonca, Ryan Wallace, Anthony Chimino, Jose Cabrera Jr, Robert Sliwinski Aug 2021

Utilizing Uas To Support Wildlife Hazard Management Efforts By Airport Operators, Flavio A. C. Mendonca, Ryan Wallace, Anthony Chimino, Jose Cabrera Jr, Robert Sliwinski

Publications

Purpose of our Study:

To investigate how UAS technologies could be safely and effectively applied to identify hazardous wildlife species to aviation operations as well as potential wildlife hazard attractants within the airport jurisdiction.


Viability And Application Of Mounting Personal Pid Voc Sensors To Small Unmanned Aircraft Systems, Cheryl Lynn Marcham, Scott Burgess, Joseph Cerreta, Patti J. Clark, James P. Solti, Brandon Breault, Joshua G. Marcham Jan 2021

Viability And Application Of Mounting Personal Pid Voc Sensors To Small Unmanned Aircraft Systems, Cheryl Lynn Marcham, Scott Burgess, Joseph Cerreta, Patti J. Clark, James P. Solti, Brandon Breault, Joshua G. Marcham

Publications

Using a UAS-mounted sensor to allow for a rapid response to areas that may be difficult to reach or potentially dangerous to human health can increase the situational awareness of first responders of an aircraft crash site through the remote detection, identification, and quantification of airborne hazardous materials. The primary purpose of this research was to evaluate the remote sensing viability and application of integrating existing commercial-off-the-shelf (COTS) sensors with small unmanned aircraft system (UAS) technology to detect potentially hazardous airborne contaminants in emergency leak or spill response situations. By mounting the personal photoionization detector (PID) with volatile organic compound …


Real-Time Work Zone Traffic Management Via Unmanned Air Vehicles, Charles Malveaux Ph.D, Marcio De Queiroz Ph.D, Xin Li Ph.D, Hany Hassan Ph.D, Zewei He Ph.D Oct 2020

Real-Time Work Zone Traffic Management Via Unmanned Air Vehicles, Charles Malveaux Ph.D, Marcio De Queiroz Ph.D, Xin Li Ph.D, Hany Hassan Ph.D, Zewei He Ph.D

Publications

Highway work zones are prone to traffic accidents when congestion and queues develop. Vehicle queues expand at a rate of 1 mile every 2 minutes. Back-of-queue, rear-end crashes are the most common work zone crash, endangering the safety of motorists, passengers, and construction workers. The dynamic nature of queuing in the proximity of highway work zones necessitates traffic management solutions that can monitor and intervene in real time. Fortunately, recent progress in sensor technology, embedded systems, and wireless communication coupled to lower costs are now enabling the development of real-time, automated, “intelligent” traffic management systems that address this problem. The …


Unmanned Aerial Systems: Research, Development, Education & Training At Embry-Riddle Aeronautical University, Michael P. Hickey Jan 2018

Unmanned Aerial Systems: Research, Development, Education & Training At Embry-Riddle Aeronautical University, Michael P. Hickey

Publications

With technological breakthroughs in miniaturized aircraft-related components, including but not limited to communications, computer systems and sensors, state-of-the-art unmanned aerial systems (UAS) have become a reality. This fast-growing industry is anticipating and responding to a myriad of societal applications that will provide new and more cost-effective solutions that previous technologies could not, or will replace activities that involved humans in flight with associated risks.

Embry-Riddle Aeronautical University has a long history of aviation-related research and education, and is heavily engaged in UAS activities. This document provides a summary of these activities, and is divided into two parts. The first part …


Uas Pilots Code – Annotated Version 1.0, Michael S. Baum, Kristine Kiernan, Donald W. Steinman, Ryan J. Wallace Ed.D. Jan 2018

Uas Pilots Code – Annotated Version 1.0, Michael S. Baum, Kristine Kiernan, Donald W. Steinman, Ryan J. Wallace Ed.D.

Publications

The UAS PILOTS CODE (UASPC) offers recommendations to advance flight safety, ground safety, airmanship, and professionalism.6 It presents a vision of excellence for UAS pilots and operators, and includes general guidance for all types of UAS. The UASPC offers broad guidance—a set of values—to help a pilot interpret and apply standards and regulations, and to confront real world challenges to avoid incidents and accidents. It is designed to help UAS pilots develop standard operating procedures (SOPs), effective risk management,7 safety management systems (SMS), and to encourage UAS pilots to consider themselves aviators and participants in the broader aviation community.


Integrating Unmanned Aircraft Operations Into The National Airspace System, Benjamin Cook, Holly Hughes, Allison Little, Kyle Wilkerson, Jennah C. Perry, Johnny Young, Jacqueline Luedtke Mar 2017

Integrating Unmanned Aircraft Operations Into The National Airspace System, Benjamin Cook, Holly Hughes, Allison Little, Kyle Wilkerson, Jennah C. Perry, Johnny Young, Jacqueline Luedtke

Publications

Commercial unmanned aircraft systems (UAS) are expected to dominate the National Airspace System (NAS) in the years to come. One particular barrier preventing integration of UAS into the NAS is the lack of standardized procedures for separating aircraft and communicating with ATC. In preparation for adopting unmanned flight operations into a complex control system, it is important to identify solutions to effectively control UAS in the NAS.

The Joint UAS and ATC Team (JUAT) group has designed several simulated ATC scenarios in order to determine effective solutions for integration. Through the use of digitized radar display overlays that replicate the …


Uas Capabilities And Performance Modeling For Application Analysis, Brent Terwilliger, Dennis Vincenzi, David Ison, Rene Herron, Todd Smith May 2015

Uas Capabilities And Performance Modeling For Application Analysis, Brent Terwilliger, Dennis Vincenzi, David Ison, Rene Herron, Todd Smith

Publications

Our team of researchers from Embry-Riddle Aeronautical University-Worldwide has been actively compiling published performance data associated with commercially-off-the-shelf (COTS) group 1 to 3 fixed-wing and vertical takeoff and landing (VTOL) unmanned aircraft systems (UAS) in an effort to develop statistical models of each category. The captured data, which includes maximum speed, cruise speed, endurance, weights, wind limitations, and costs, is used to calculate capabilities including range (one-way and return), time to objective, station keeping duration, maneuver requirements, and derive limited missing information (e.g., component speeds and weights). The benefit from assembling such a unified collection of information and the calculation …


Effects Of Visual Interaction Methods On Simulated Unmanned Aircraft Operator Situational Awareness, Brent A. Terwilliger Jan 2012

Effects Of Visual Interaction Methods On Simulated Unmanned Aircraft Operator Situational Awareness, Brent A. Terwilliger

Publications

The limited field of view of static egocentric visual displays employed in unmanned aircraft controls introduces the soda straw effect on operators, which significantly affects their ability to capture and maintain situational awareness by not depicting peripheral visual data. The problem with insufficient operator situational awareness is the resulting increased potential for error and oversight during operation of unmanned aircraft, leading to accidents and mishaps costing United States taxpayers between $4 million to $54 million per year. The purpose of this quantitative experimental completely randomized design study was to examine and compare use of dynamic eyepoint to static visual interaction …


Unmanned Aircraft System Propulsion Systems Technology Survey, Christopher Griffis, Timothy Wilson, Jeffrey Schneider, Peter Pierpont Sep 2009

Unmanned Aircraft System Propulsion Systems Technology Survey, Christopher Griffis, Timothy Wilson, Jeffrey Schneider, Peter Pierpont

Publications

This technology survey is an investigation of various propulsion systems used in Unmanned Aircraft Systems (UAS). Discussed are existing and near-future propulsion mechanisms of UAS, such as reciprocating piston engines, Wankel rotary engines, gas turbine engines, rocket-powered systems, electric motors, and battery-based systems. Also discussed are systems that use proton exchange membrane fuel cells, photovoltaics, ultracapacitors, and propellers. Each system is described in reference to a larger conceptual framework, with instances and profiles of existing UAS employing the system being described. Advantages and disadvantages of each type of propulsion system are identified along with associated technical issues and their respective …


A Technology Survey Of Emergency Recovery And Flight Termination Systems For Uas, Richard Stansbury, Wesley Tanis, Timothy Wilson Apr 2009

A Technology Survey Of Emergency Recovery And Flight Termination Systems For Uas, Richard Stansbury, Wesley Tanis, Timothy Wilson

Publications

For safe flight in the National Airspace System (NAS), either under the current interim rules or under anticipated longer-term regulatory guidelines facilitating unmanned aircraft system (UAS) access to the NAS, the UAS must incorporate technologies and flight procedures to ensure that neither people nor property in the air, on the ground, or on or in the water are endangered by the failure of an onboard component, by inappropriate unmanned aircraft (UA) response to pilot commands, or by inadvertent entry by the UA into prohibited airspace. The aircraft must be equipped with emergency recovery (ER) procedures and technologies that ensure that …