Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Engineering

Sulfonated Styrene Grafted Sebs/Abs Made By Additive Manufacturing For Ion Exchange Applications, Avianna Elaine Gallegos Dec 2022

Sulfonated Styrene Grafted Sebs/Abs Made By Additive Manufacturing For Ion Exchange Applications, Avianna Elaine Gallegos

Open Access Theses & Dissertations

An interpenetrating polymer network (IPN) for cation exchange applications was synthesized from a blend of styrene-ethylene/butylene-styrene (SEBS) and acrylonitrile butadiene styrene (ABS), which was 3D printed, grafted with crosslinked polystyrene (PS), and sulfonated. A method for styrene grafting was applied to reduce the damage to polymer phases caused by the sulfonation reaction. Styrene and divinylbenzene monomers were introduced to the IPN and induced with heat treatment to polymerize in situ. The graft copolymerization reaction was enhanced with varying quantities of benzoyl peroxide as a chemical initiator. The samples were subsequently sulfonated with chlorosulfonic acid in dichloroethane and functionalized for ion …


Processes & Toolchain For Automation Of Hybrid Direct-Write 3d Printing, Gilbert Thomas Carranza Dec 2022

Processes & Toolchain For Automation Of Hybrid Direct-Write 3d Printing, Gilbert Thomas Carranza

Open Access Theses & Dissertations

Hybrid 3D printing has evolved from a means to rapidly prototype devices to a fully viable means of manufacturing final products. In particular, electronic and electromagnetic devices have been a focus of hybrid 3D printing multi material structures. However, while the hardware capabilities have been around for years, the software capabilities have only begun to catch up. A process and toolchain for hybrid 3D printing is critically needed.This work details a process and toolchain for hybrid 3D printing metal dielectric structures. In it, a basic slicing algorithm is shown along with off-axis printing and conformal printing for arbitrary curvatures. These …


Direct Ink Write And Thermomechanical Characterization Of Thermoset Composites, Sergio Dante Favela Dec 2022

Direct Ink Write And Thermomechanical Characterization Of Thermoset Composites, Sergio Dante Favela

Open Access Theses & Dissertations

This research will be divided into two sections. The first section discusses direct ink writing and thermomechanical characterization for thermoset composites. The thermoset ink is prepared with fillers aiding the printing process by modifying the rheology of the ink and geometry retention by allowing for the part to have an initial UV cure step. Three specimen formulations with different weight percentages were printed by material extrusion in the shape of tensile specimens following ASTM standard D638 to characterize the mechanical properties at room temperature, 100â?? and 200â??. Furthermore, the ink resin was characterized through DSC, TGA, and rheology testing. The …


3d Printing Of Ceramics And Polymers For Engineering Applications, Jesus Javier Mata May 2022

3d Printing Of Ceramics And Polymers For Engineering Applications, Jesus Javier Mata

Open Access Theses & Dissertations

The Additive Manufacturing industry, in the last years [1] has shown a great push with the development and inclusion of new technologies that have enable the engineering world to achieve great advances. As a consequence of this surge of new technology deriving from the basic principle that conforms additive manufacturing, according to the ASTM a total of seven categories have been defined. The inclusion of these new technologies and the ongoing advances in material implementation has provided the industry with a degree of freedom never seen before, leading to the creation of new solutions to existing problems that seemed impossible …


Material Synthesis And Machine Learning For Additive Manufacturing, Jaime Eduardo Regis May 2022

Material Synthesis And Machine Learning For Additive Manufacturing, Jaime Eduardo Regis

Open Access Theses & Dissertations

The goal of this research was to address three key challenges in additive manufacturing (AM), the need for feedstock material, minimal end-use fabrication from lack of functionality in commercially available materials, and the need for qualification and property prediction in printed structures. The near ultraviolet-light assisted green reduction of graphene oxide through L-ascorbic acid was studied with to address the issue of low part strength in additively manufactured parts by providing a functional filler that can strengthen the polymer matrix. The synthesis of self-healing epoxy vitrimers was done to adapt high strength materials with recyclable properties for compatibility with AM …


Suitability Of Low-Cost Additive Manufacturing For Polymer Electrolyte Fuel Cells, David Alexander May 2022

Suitability Of Low-Cost Additive Manufacturing For Polymer Electrolyte Fuel Cells, David Alexander

Open Access Theses & Dissertations

The purpose of this dissertation is to study the feasibility of low-cost additive manufacturing to fabricate polymer electrolyte fuel cell bipolar plate materials. Traditional manufacturing techniques include molding, milling, hollow embossing, hydro-forming, rolling, and electromagnetic forming. These processes are employed when a design has been selected due to higher costs at low volumes. The combination of high initial costs and bipolar plates being the most expensive component of the polymer electrolyte fuel cell creates incentive to mitigate this obstacle. The feasibility of low-cost additive manufactured bipolar plates will be proven by fabrication, post-processing, and characterization of printed test specimen. The …


All-In-One Multi3d System: Exploring Potential Of 5-Axis Material Extrusion Additive Manufacturing, Angel Vega May 2022

All-In-One Multi3d System: Exploring Potential Of 5-Axis Material Extrusion Additive Manufacturing, Angel Vega

Open Access Theses & Dissertations

Additive Manufacturing (AM) has experienced consistent growth since its inception across its seven process categories, especially Material Extrusion (MEX) with systems that can be seen in commercial and industrial settings. As MEX evolves, innovation can be traced in the growing variety of available process materials and new system capabilities leading to greater interest in the technology across various industries including automotive, aerospace and even nuclear weapons. This has created an increasing demand for end-use parts from MEX systems leading to more complex machines with additional Degrees of Freedom (DoF), specialized workflows, and expanded post processing that address the drawbacks of …