Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Engineering

Study Of Take-Up Velocity In Enhancing Tensile Properties Of Aligned Electrospun Nylon 6 Fibers, Johnny F. Najem Dec 2009

Study Of Take-Up Velocity In Enhancing Tensile Properties Of Aligned Electrospun Nylon 6 Fibers, Johnny F. Najem

Mechanical Engineering Faculty Research

The variation of both the tensile properties and thermal properties of aligned electrospun fibers with the take-up velocity (TUV) of disc collector has not been widely investigated due to the difficulty of handling aligned nanofibers and measuring low loads. In this thesis, 25% of nylon 6 was dissolved in formic acid and then electrospun into fibers and the fibers were aligned using a rotating disc collector. We evaluated the tensile and thermal properties, average fiber diameter, crystallinity, crystalline morphology, molecular and crystalline orientation of aligned electrospun nylon 6 nanofibers as a function of TUV based on a disc collector. It …


Doppler Broadening Analysis Of Steel Specimens Using Accelerator Based In Situ Pair Production, V. Makarashvili, Douglas P. Wells, Ajit K. Roy Aug 2009

Doppler Broadening Analysis Of Steel Specimens Using Accelerator Based In Situ Pair Production, V. Makarashvili, Douglas P. Wells, Ajit K. Roy

Mechanical Engineering Faculty Research

Positron Annihilation Spectroscopy (PAS) techniques can be utilized as a sensitive probe of defects in materials. Studying these microscopic defects is very important for a number of industries in order to predict material failure or structural integrity. We have been developing gamma‐induced pair‐production techniques to produce positrons in thick samples ( ∼4–40 g/cm2, or ∼0.5–5 cm in steel). These techniques are called ‘Accelerator‐based Gamma‐induced Positron Annihilation Spectroscopy’ (AG‐PAS). We have begun testing the capabilities of this technique for imaging of defect densities in thick structural materials. As a first step, a linear accelerator (LINAC) was employed to produce photon beams …


Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Yingtao Jiang, Xiangchun Xuan, Shizhi Qian Jun 2009

Pressure-Driven Transport Of Particles Through A Converging-Diverging Microchannel, Ye Ai, Sang W. Joo, Yingtao Jiang, Xiangchun Xuan, Shizhi Qian

Mechanical Engineering Faculty Research

Pressure-driven transport of particles through a symmetric converging-diverging microchannel is studied by solving a coupled nonlinear system, which is composed of the Navier–Stokes and continuity equations using the arbitrary Lagrangian–Eulerian finite-element technique. The predicted particle translation is in good agreement with existing experimental observations. The effects of pressure gradient, particle size, channel geometry, and a particle’s initial location on the particle transport are investigated. The pressure gradient has no effect on the ratio of the translational velocity of particles through a converging-diverging channel to that in the upstream straight channel. Particles are generally accelerated in the converging region and then …


Static And Dynamic Responsive Behavior Of Polyelectrolyte Brushes Under External Electrical Field, Hui Ouyang, Zhenhai Xia, Jiang Zhe Apr 2009

Static And Dynamic Responsive Behavior Of Polyelectrolyte Brushes Under External Electrical Field, Hui Ouyang, Zhenhai Xia, Jiang Zhe

Mechanical Engineering Faculty Research

The static and dynamic behaviors of partially charged and end-grafted polyelectrolyte brushes in response to electric fields were investigated by means of molecular dynamics simulation. The results show that the polymer brushes can be partially or fully stretched by applying an external electric field. Moreover, the brushes can switch reversibly from collapsed to stretched states, fully responding to the AC electric stimuli, and the gating response frequency can reach a few hundred MHz. The effects of the grafting density, the charge fraction of the brushes and the strength of the electric field on the average height of the polymer brushes …


The Effect Of Silicon Content On Impact Toughness Of T91 Grade Steels, Ajit K. Roy, Pankaj Kumar, Debajyoti Maitra Mar 2009

The Effect Of Silicon Content On Impact Toughness Of T91 Grade Steels, Ajit K. Roy, Pankaj Kumar, Debajyoti Maitra

Mechanical Engineering Faculty Research

The impact resistance of silicon (Si)-containing modified 9Cr-1Mo steels has been investigated within a temperature regime of -40 to 440°C using the Charpy method. The results indicate that the energies absorbed in fracturing the tested specimens were substantially lower at temperatures of -40, 25, and 75°C compared to those at elevated temperatures. Lower impact energies and higher ductile-to-brittle-transition-temperatures (DBTTs) were observed with the steels containing 1.5 and 1.9 wt.% Si. The steels containing higher Si levels exhibited both ductile and brittle failures at elevated temperatures. However, at lower temperatures, brittle failures characterized by cleavage and intergranular cracking were observed for …


Particle Swarm Optimization Approach For Maximizing The Yield Of A Coal Preparation Plant, Vishal Gupta, Hussain Unjawala, Ajay Mohan Mahajan, Manoj Mohanty Jan 2009

Particle Swarm Optimization Approach For Maximizing The Yield Of A Coal Preparation Plant, Vishal Gupta, Hussain Unjawala, Ajay Mohan Mahajan, Manoj Mohanty

Mechanical Engineering Faculty Research

This paper presents the use of particle swarm optimization to maximize the clean coal yield of a coal preparation plant that typically has multiple cleaning circuits that produce the same product quality so that the blend of clean coal meets the targeted product quality contraints. Particle swarm is used for the yield optimization while satisfying multiple product quality restraints. The results show a 2.73% increase in the yield can be achieved leading to additional revenue of $5,460,000 per annum for a plant producing 10 million tons of clean coal per year without significantly adding to the implementation/operation cost.


Material Selection Of Z-Fibre In Stitched Composites - Experimental And Analytical Comparison Approach, Kwek Tze Tan, N. Watanabe, M. Sano, M. Takase, Y. Iwahori, H. Hoshi Jan 2009

Material Selection Of Z-Fibre In Stitched Composites - Experimental And Analytical Comparison Approach, Kwek Tze Tan, N. Watanabe, M. Sano, M. Takase, Y. Iwahori, H. Hoshi

Mechanical Engineering Faculty Research

Strain energy release rates are measured and compared for laminated composites stitched with different fibre materials – Carbon, Kevlar and Vectran. DCB test and FE simulation are performed to evaluate the interlaminar toughness. It is proven that Vectran provides the toughest interlaminar reinforcement and is most suitable for Zfibre application.


Numerical Modeling Of The Constraint Effects On Cleavage Fracture Toughness, Sunil Prakash, Xiaosheng Gao, T. S. Srivatsan Jan 2009

Numerical Modeling Of The Constraint Effects On Cleavage Fracture Toughness, Sunil Prakash, Xiaosheng Gao, T. S. Srivatsan

Mechanical Engineering Faculty Research

Cleavage fracture has been an important subject for engineers primarily because of its catastrophic nature and consequences. Experimental studies of cleavage fracture did reveal a considerable amount of scatter and provided evidence of noticeable constraint effects. This did provide the motivation for the development of statistical-based and micromechanics-based methods in order to both study and analyze the problem. The Weibull stress model, which is based on the weakest link statistics, uses two parameters (m and σ u) to effectively describe the inherent distribution of the micro-scale cracks once plastic deformation has occurred and to concurrently define the relationship between the …


An H-Adaptive Finite-Element Technique For Constructing 3d Wind Fields, Darrell Pepper, Xiuling Wang Jan 2009

An H-Adaptive Finite-Element Technique For Constructing 3d Wind Fields, Darrell Pepper, Xiuling Wang

Mechanical Engineering Faculty Research

An h-adaptive, mass-consistent finite-element model (FEM) has been developed for constructing 3D wind fields over irregular terrain utilizing sparse meteorological tower data. The element size in the computational domain is dynamically controlled by an a posteriori error estimator based on the L2 norm. In the h-adaptive FEM algorithm, large element sizes are typically associated with smooth flow regions and small errors; small element sizes are attributed to fast-changing flow regions and large errors. The adaptive procedure employed in this model uses mesh refinement–unrefinement to satisfy error criteria. Results are presented for wind fields using sparse data obtained from two regions …


Research On The Transport And Deposition Of Nanoparticles In A Rotating Curved Pipe, Jianzhong Lin, Peifeng Lin, Huajun Chen Jan 2009

Research On The Transport And Deposition Of Nanoparticles In A Rotating Curved Pipe, Jianzhong Lin, Peifeng Lin, Huajun Chen

Mechanical Engineering Faculty Research

A finite-volume code and the SIMPLE scheme are used to study the transport and deposition of nanoparticles in a rotating curved pipe for different angular velocities, Dean numbers, and Schmidt numbers. The results show that when the Schmidt number is small, the nanoparticle distributions are mostly determined by the axial velocity. When the Schmidt number is many orders of magnitude larger than 1, the secondary flow will dominate the nanoparticle distribution. When the pipe corotates, the distribution of nanoparticle mass fraction is similar to that for the stationary case. There is a “hot spot” deposition region near the outside edge …