Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Solution Casting And Mechanical Testing Of Arabinan-Cellulose Nanocomposites, Kevin Su, Alina Lusebrink Jun 2016

Solution Casting And Mechanical Testing Of Arabinan-Cellulose Nanocomposites, Kevin Su, Alina Lusebrink

Materials Engineering

The purpose of this work was to investigate methods to produce consistent, reliable, and testable thin films of arabinan-cellulose nanocomposites. Mechanical properties and composition of the Opuntia ficus-indica cactus spines served as motivation for this research. The high specific strength and stiffness, biodegradability, and sustainability of these spines inspired the creation of composites fabricated from the same materials found in cactus spines: arabinan and nanocrystalline cellulose (NCC). Arabinan serves as the matrix material and NCC as the reinforcement. To explore the feasibility of using a non-toxic solvent, different solution casting techniques with water as a solvent were investigated. Ultrasonication was …


Molecular Dynamics Investigation Of The Arabinan-Cellulose Interface For Cellulose Nanocomposite Applications, Luke Thornley Jun 2015

Molecular Dynamics Investigation Of The Arabinan-Cellulose Interface For Cellulose Nanocomposite Applications, Luke Thornley

Materials Engineering

Atom level computer simulations of the arabinan and cellulose interface were performed to better understand the mechanisms that give arabinan-cellulose composites (ArCCs) their strength with the goal to improve man-made ArCCs. The molecular dynamics (MD) software LAMMPS was used in conjunction with the ReaxFF/c force field to model the bond between cellulose and arabinan. A cellulose nanocrystal with dimensions 51 x 32 x 8 Å was minimized with various weight percent of water, 0%, 3%, 5%, 8%, 10%, and 12%. After the system was equilibrated for at least 100,000 femtoseconds, an arabinan molecule composed of 8 arabinose rings was added …


Fabrication And Testing Of Arabinan Cellulose Nanocomposites, Ross Johnson, Austin Rosso, Nick Semansky Jun 2014

Fabrication And Testing Of Arabinan Cellulose Nanocomposites, Ross Johnson, Austin Rosso, Nick Semansky

Materials Engineering

Inspired by the structure and composition of cactus spines found in nature, arabinan-cellulose nanocomposites were fabricated into thin films and tested for mechanical stiffness. The composites consisted of varying amounts of nanocrystalline cellulose reinforcement suspended in an arabinan matrix. Both materials are polysaccharides and are known to be biodegradable and food safe. The thin film samples were tensile tested using a dynamic mechanical analysis machine both as-cast and after a heat-treatment. The heat treatment of the arabinan itself resulted in an order of magnitude increase in stiffness, while the cellulose reinforced composites increased roughly six fold. The arabinan-50 wt% cellulose …


An Investigation Of Arabinan And Cellulose Based Nano-Composite Fabrication Methods, Marianne Smithfield, Carl Petterson, Robert Miller Jun 2013

An Investigation Of Arabinan And Cellulose Based Nano-Composite Fabrication Methods, Marianne Smithfield, Carl Petterson, Robert Miller

Materials Engineering

Microcrystalline cellulose was converted into nanocrystalline cellulose via an acid hydrolysis procedure. Scanning electron microscopy (SEM) was employed to measure the particle size and thus the effectiveness of acid hydrolysis. The nanocrystalline cellulose was poured through a 0.2μm filter to isolate the particles of ideal size. The nanocrystalline cellulose samples were stored in dimethylformamide (DMF) to prevent mold growth and agglomeration upon drying. Numerous composite samples were created by dissolving the arabinan in a solvent, suspending cellulose in the arabinan solution, and then drying the sample. Casting was performed in a silicon mold to allow sample removal without damage. Initial …