Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

The Design And Manufacture Of A Microfluidic Reactor For Synthesis Of Cadmium Selenide Quantum Dots Using Silicon And Glass Substrates, Peter Gonsalves Jun 2011

The Design And Manufacture Of A Microfluidic Reactor For Synthesis Of Cadmium Selenide Quantum Dots Using Silicon And Glass Substrates, Peter Gonsalves

Materials Engineering

A microfluidic reactor for synthesizing cadmium selenide (CdSe) quantum dots (QDs) was synthesized out of silicon and Pyrex glass. Microfabrication techniques were used to etch the channels into the silicon wafer. Holes were wet-drilled into Pyrex glass using a diamond-tip drill bit. The Pyrex wafer was aligned to the etched silicon wafer and both were anodically bonded to complete the microfluidic reactor. Conditions for anodic bonding were created by exposing the stacked substrates to 300V at ~350oC under 5.46N of force. Bulk CdSe solution was mixed at room temperature and treated as a single injection. The syringe containing …


Characterization Of A Pdms Microfluidic Reactor For Synthesizing Quantum Dots, Brian Harley Jun 2011

Characterization Of A Pdms Microfluidic Reactor For Synthesizing Quantum Dots, Brian Harley

Materials Engineering

A PDMS microfluidic reactor was made in Cal Poly’s class 1000 clean room for the purpose of synthesizing quantum dots. The device master mold was made from a silicon substrate and SU-8 features 50μm tall. The PDMS reactor was cast from that mold. The flow rates of fluid through the channels, heating of the reactor and pressure in the reactor were measured in order to characterize the potential for synthesizing quantum dots. Flow rates of 20 mL/hr through 4 mL/hr were tested to characterize the consistency of amount of time the fluid remains in the reactor at a constant flow …