Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering

Investigation Of The Encapsulation Efficiency Of Hexanal In Y-Cyclodextrin Metal Organic Frameworks, Travis J. Lang Jun 2019

Investigation Of The Encapsulation Efficiency Of Hexanal In Y-Cyclodextrin Metal Organic Frameworks, Travis J. Lang

Materials Engineering

Nanoporous materials have been extensively studied for applications such as drug delivery and organic compound storage. The nanoporous material of this study is a metal organic framework (MOF) which is a coordination of metal ions with organic binders. The structure created by this coordination can be used to absorb organic compounds, such as plant growth regulators, and subsequently release the organic compounds over a prolonged period to extend the storage life of foods. This study is examining the encapsulation efficiency of hexanal in γ-cyclodextrin metal organic frameworks (γ-CDMOFs) as a mechanism for potential active packaging applications. γ-CDMOFs were synthesized by …


In Situ Sem Solidification Study Of Ga And Egain: A Characterization Technique For Monitoring The Microstructural Evolution Of Liquid Metals, Jeremy Geovann Del Aguila Jun 2018

In Situ Sem Solidification Study Of Ga And Egain: A Characterization Technique For Monitoring The Microstructural Evolution Of Liquid Metals, Jeremy Geovann Del Aguila

Materials Engineering

Scanning electron microscopy (SEM) video recording is used to characterize the solidification of small volumes of 99.999% pure gallium (Ga) and eutectic gallium-indium (eGaIn) under a high vacuum environment. Specimen are superheated to 55℃ using a hot plate, cast into spherical droplets, and cooled in situ by means of a Peltier cooling stage. Special attention is given to the preparation of the specimen prior to viewing because of gallium and its alloys’ nature to form an oxide layer when melted and air cooled. The oxide acts as a skin that inhibits the observation of microstructural features during solidification. Heated samples …


Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook Jun 2015

Minimizing Sheet Resistance Of Organic Photovoltaic Cell Top Contact Electrode Layer: Silver Nanowire Concentration Vs. Conductive Polymer Doping Concentration, Caitlyn Cook

Materials Engineering

The top contact electrode layers of nine organic photovoltaic cells were prepared with two varying factors: three Silver nanowire (AgNW) densities deposited on a conductive polymer doped with three concentrations. Silver’s low sheet resistance of 20-Ω/sq is hypothesized to lower the sheet resistance of the anode layer and thus enhance the overall efficiency of the cell. Four-point probe measurements indicated that increasing AgNW density in the top contact electrode layer of an organic photovoltaic cell significantly reduces sheet resistance from 52.2k-Ω/sq to 18.0 Ω/sq. Although an increase in doping concentration of the conductive polymer reduced sheet resistance in low AgNW …


Bond Strength Characterization Of Su-8 To Su-8 For Fabricating Microchannels Of An Electrokinetic Microfluidic Pump, Nash Anderson Jun 2012

Bond Strength Characterization Of Su-8 To Su-8 For Fabricating Microchannels Of An Electrokinetic Microfluidic Pump, Nash Anderson

Materials Engineering

Photosensitive negative resist polymer layers of SU-8 2050 were adhered to 100 mm n-type silicon and Pyrex wafers via spin coating. These wafers were then bonded together at various temperatures of 100 ͦC, 120 ͦC, 140 ͦC, 150 ͦC, 160 ͦC, and 180 ͦC. The target thickness of each SU-8 layer was 100 µm. Photolithography was used to create microfluidic channels within the SU-8. An n-type silicon wafer and a Pyrex wafer, each with an SU-8 layer, were brought together on the “hard bake” or final step of SU-8 polymerization. A pressure of ~300 KPa was applied during the hard …