Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Engineering

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron Aug 2023

Design And Fabrication Of A Trapped Ion Quantum Computing Testbed, Christopher A. Caron

Masters Theses

Here we present the design, assembly and successful ion trapping of a room-temperature ion trap system with a custom designed and fabricated surface electrode ion trap, which allows for rapid prototyping of novel trap designs such that new chips can be installed and reach UHV in under 2 days. The system has demonstrated success at trapping and maintaining both single ions and cold crystals of ions. We achieve this by fabricating our own custom surface Paul traps in the UMass Amherst cleanroom facilities, which are then argon ion milled, diced, mounted and wire bonded to an interposer which is placed …


Planar Ultra-Wideband Modular Antenna (Puma) Arrays For High-Volume Manufacturing On Organic Laminates And Bga Interfaces, James R. Lacroix Mar 2022

Planar Ultra-Wideband Modular Antenna (Puma) Arrays For High-Volume Manufacturing On Organic Laminates And Bga Interfaces, James R. Lacroix

Masters Theses

This work proposes wideband and broadband Planar Ultra-wideband Modular Antenna (PUMA) arrays designed to improve cost and reliability for high production volume commercial and military applications. The designs feature simplified PCB stack-ups with high dielectric constant (Dk) dimensionally stable materials to improve the manufacturing cost and yield. Additionally, the packages use ball grid array (BGA) interconnects, commonly used in digital electronics, for simple solder reflow integration with radio frequency (RF) electronics. While high Dk materials present practical manufacturing benefits, theoretical background will show how and why PUMA arrays lose frequency bandwidth and scan volume with high Dk materials. Further, a …


Modeling And Characterization Of Optical Metasurfaces, Mahsa Torfeh Oct 2021

Modeling And Characterization Of Optical Metasurfaces, Mahsa Torfeh

Masters Theses

Metasurfaces are arrays of subwavelength meta-atoms that shape waves in a compact and planar form factor. During recent years, metasurfaces have gained a lot of attention due to their compact form factor, easy integration with other devices, multi functionality and straightforward fabrication using conventional CMOS techniques. To provide and evaluate an efficient metasurface, an optimized design, high resolution fabrication and accurate measurement is required. Analysis and design of metasurfaces require accurate methods for modeling their interactions with waves. Conventional modeling techniques assume that metasurfaces are locally periodic structures excited by plane waves, restricting their applicability to gradually varying metasurfaces that …


The Umass Experimental X-Band Radar (Umaxx): An Upgrade Of The Casa Ma-1 To Support Cross-Polarization Measurements, Jezabel Vilardell Sanchez Aug 2019

The Umass Experimental X-Band Radar (Umaxx): An Upgrade Of The Casa Ma-1 To Support Cross-Polarization Measurements, Jezabel Vilardell Sanchez

Masters Theses

Ground-based radars are instruments commonly used to surveil the precipitation climate of the surrounding areas. Weather events are characterized by collecting backscatter data and analyzing computed products such as the Reflectivity Factor, the Doppler Velocity, the Spectrum Width, the Differential Reflectivity, the Co-polar Correlation Coefficient and the Differential Propagation Phase. The ability of the radar to transmit different polarization waves, such as horizontal and vertical polarization, allow for further analysis of the weather given the capability to perform co-polar and cross-polar measurements. The Linear Depolarization Ratio is another computed product based on the difference in power between the co-polarized and …


Kasi: A Ka-Band And S-Band Cross-Track Interferometer, Gerard Ruiz Carregal Mar 2017

Kasi: A Ka-Band And S-Band Cross-Track Interferometer, Gerard Ruiz Carregal

Masters Theses

A dual-frequency system is needed to better understand natural processes that constitute the environment and seasonal cycles of the Earth. A system working at two different wavelengths acquiring data simultaneously will give a valuable dataset since the conditions on the ground will be exactly the same. Hence, elements such as wind, soil moisture or any other changes on the ground will not interfere in the mea- surements. This thesis explains how an S-band radar was built and tested. Moreover, the experiments done with a Ka-band radar used as a scatterometer are explained as well as the data processing and analysis. …


Development Of Infrared And Terahertz Bolometers Based On Palladium And Carbon Nanotubes Using Roll To Roll Process, Amulya Gullapalli Mar 2015

Development Of Infrared And Terahertz Bolometers Based On Palladium And Carbon Nanotubes Using Roll To Roll Process, Amulya Gullapalli

Masters Theses

Terahertz region in the electromagnetic spectrum is the region between Infrared and Microwave. As the Terahertz region has both wave and particle nature, it is difficult to make a room temperature, fast, and sensitive detector in this region. In this work, we fabricated a Palladium based IR detector and a CNT based THz bolometer.

In Chapter 1, I give a brief introduction of the Terahertz region, the detectors already available in the market and different techniques I can use to test my detector. In Chapter 2, I explain about the Palladium IR bolometer, the fabrication technique I have used, and …


Propagation Prediction Over Random Rough Surface By Zeroth Order Induced Current Density, Narayana Srinivasan Balu Nov 2014

Propagation Prediction Over Random Rough Surface By Zeroth Order Induced Current Density, Narayana Srinivasan Balu

Masters Theses

Electromagnetic wave propagation over random sea surfaces is a classical problem of interest for the Navy, and significant research has been done over the years. Here we make use of numerical and analytical methods to predict the propagation of microwaves over random rough surface. The numerical approach involves utilization of the direct solution (using Volterra integral equation of the second kind) to currents induced on a rough surface due to forward propagating waves to compute the scattered field. The mean scattered field is computed using the Monte-Carlo method. Since the exact solution (consisting of an infinite series) to induced current …


Design Of Non-Uniform Linear Array Via Linear Programming And Particle Swarm Optimization And Studies On Phased Array Calibration, Hua Bai Nov 2014

Design Of Non-Uniform Linear Array Via Linear Programming And Particle Swarm Optimization And Studies On Phased Array Calibration, Hua Bai

Masters Theses

For a linear array, the excitation coefficients of each element and its geometry play an important role, because they will determine the radiation pattern of the given array. Side Lobe Level (SLL) is one of the key parameters to evaluate the radiation pattern of the array. Generally speaking, we desire SLL to be as low as possible. For the linear array with uniform spacing, there are some classic methods to calculate the excitation coefficients to make the radiation pattern satisfy the given requirements. For the linear array with non-uniform spacing, linear programming and particle swarm optimization are proposed to calculate …


Design And Evaluation Of An L-Band Current-Mode Class-D Power Amplifier Integrated Circuit, Michael J. Shusta Aug 2014

Design And Evaluation Of An L-Band Current-Mode Class-D Power Amplifier Integrated Circuit, Michael J. Shusta

Masters Theses

Power amplifiers (PAs) convert energy from DC to high frequencies in all radio and microwave transmitter systems be they wireless base stations, handsets, radars, heaters, and so on. PAs are the dominant consumers of energy in these systems and, therefore, the dominant sources of system cost and inefficiency. Research has focused on efficient solid-state PA circuit topologies and their optimization since the 1960s. The 2000s saw the current-mode class-D (CMCD) topology, potentially suitable for today's wireless communications systems, show promise in the UHF frequency band. This thesis describes the design and testing of a high-efficiency CMCD amplifier with an integrated …