Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Masters Theses

Engineering Science and Materials

Institution
Keyword
Publication Year

Articles 1 - 30 of 94

Full-Text Articles in Engineering

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo Dec 2021

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo

Masters Theses

Hot stamping is part of a specific type of metalworking procedure widely used in the automotive industry. This research seeks to help make hot stamp tooling component production more cost-effective by using large-scale additive manufacturing. Additive manufacturing can produce dissimilar steel components that can be more cost-effective and time-efficient and allow for complex geometries to be made. A dissimilar steel system consisting of 410 martensitic stainless steel and AWS ER70S-6 mild steel is proposed to make hot stamps, making them more cost-efficient. However, the material interface's mechanical behavior in 410SS-mild steel additively manufactured material systems is not well understood. This …


Modeling The Torque Of Ferrite Nano-Particles As A Ferrofluid Suspended In Liquid To Determine The Electromagnetic Response To Angular Displacement, Jackson Tyler Brennecke Dec 2020

Modeling The Torque Of Ferrite Nano-Particles As A Ferrofluid Suspended In Liquid To Determine The Electromagnetic Response To Angular Displacement, Jackson Tyler Brennecke

Masters Theses

Inertial sensing is an important part of engineering and technology, especially for determining spatial orientation. Most modern inertial sensing units rely on MicroElectroMechanical systems (MEMS) style gyroscopic sensors to determine angular acceleration. This research investigates a novel gyroscopic sensing technology that uses mechanical precision of magnetic nanoparticles, instead of MEMS, to determine inertial measurements. The only other study on this novel technology proposed a scalar set of equations for relating magnetic field and torque magnitude to the magnitude of angular displacement of the sensor. This research develops the theoretical model into a set of full vector equations, so that the …


A Cfd Study On The Performance Of High Speed Planing Hulls, Mowgli J. Crosby Dec 2019

A Cfd Study On The Performance Of High Speed Planing Hulls, Mowgli J. Crosby

Masters Theses

Most high speed water craft are able to achieve high speeds through the use of a planing hull. Planing hulls use hydrodynamic forces to lift a portion of the vessel out of the water, reducing drag, and allowing for greater speeds. Determining the flow around such vessels is traditionally achieved using a scale model in a tow tank. The purpose of this study was to analyze the performance of a high speed planing hull determine the effects of several geometric features using computational fluid dynamics rather than traditional experimentation. The goal was to determine the best configuration to ensure the …


High Strain Rate Dynamic Response Of Aluminum 6061 Micro Particles At Elevated Temperatures And Varying Oxide Thicknesses Of Substrate Surface, Carmine Taglienti Jul 2018

High Strain Rate Dynamic Response Of Aluminum 6061 Micro Particles At Elevated Temperatures And Varying Oxide Thicknesses Of Substrate Surface, Carmine Taglienti

Masters Theses

Cold spray is a unique additive manufacturing process, where a large number of ductile metal micro particles are deposited to create new surface coatings or free-standing structures. Metallic particles are accelerated through a gas stream, reaching velocities of over 1 km/s. Accelerated particles experience a high-strain-rate microscopic ballistic collisions against a target substrate. Large amounts of kinetic energy results in extreme plastic deformation of the particles and substrate. Though the cold spray process has been in use for decades, the extreme material science behind the deformation of particles has not been well understood due to experimental difficulties arising from the …


Modeling Of Dislocation Channel Formation And Evolution In Irradiated Metals, Peter James Doyle Dec 2017

Modeling Of Dislocation Channel Formation And Evolution In Irradiated Metals, Peter James Doyle

Masters Theses

Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) …


Numerical Simulation Of Multi-Phase Core-Shell Molten Metal Drop Oscillations, Kaushal Sumaria Oct 2017

Numerical Simulation Of Multi-Phase Core-Shell Molten Metal Drop Oscillations, Kaushal Sumaria

Masters Theses

The surface tension of liquid metals is an important and scientifically interesting parameter which affects many metallurgical processes such as casting, welding and melt spinning. Conventional methods for measuring surface tension are difficult to use for molten metals above temperatures of 1000 K. Containerless methods are can be used to measure the surface tension of molten metals above 1000 K. Oscillating drop method is one such method where a levitated droplet is allowed to undergo damped oscillations. Using the Rayleigh’s theory for the oscillation of force-free inviscid spherical droplets, surface tension and viscosity of the sample can be calculated from …


Experimental Study On Viscoelastic Fluid-Structure Interactions, Anita Anup Dey Jul 2017

Experimental Study On Viscoelastic Fluid-Structure Interactions, Anita Anup Dey

Masters Theses

It is well known that when a flexible or flexibly-mounted structure is placed perpendicular to the flow of a Newtonian fluid, it can oscillate due to the shedding of separated vortices at high Reynolds numbers. If the same flexible object is placed in non-Newtonian flows, however, the structure's response is still unknown. The main objective of this thesis is to introduce a new field of viscoelastic fluid-structure interactions by showing that the elastic instabilities that occur in the flow of viscoelastic fluids can drive the motion of a flexible structure placed in its path. Unlike Newtonian fluids, the flow of …


The Modification Of A Curtain Coating Formulation: A Study Of Rheology And Surface Tension, And Their Effect On Pitting, Samantha Leigh Schoenfelder Jun 2017

The Modification Of A Curtain Coating Formulation: A Study Of Rheology And Surface Tension, And Their Effect On Pitting, Samantha Leigh Schoenfelder

Masters Theses

When an undisclosed recycled fiber mill installed a “two-slotted” curtain coater to replace their air knife coater, a prominent defect arose known as “pitting,” which is also called pinholing or cratering. Pitting occurs when the coating of the sheet has small holes that mar its surface, which, when clustered together or larger in size, can cause print breakup during the printing process.

Through research, pitting is known to be caused by a boundary layer of air that gets laterally pulled in between the coating and board during their initial contact. Thus, rheological properties and the surface tension of the curtain …


Angle Of Attack Determination Using Inertial Navigation System Data From Flight Tests, Jack Kevin Ly May 2017

Angle Of Attack Determination Using Inertial Navigation System Data From Flight Tests, Jack Kevin Ly

Masters Theses

Engineers and pilots rely on mechanical flow angle vanes on air data probes to determine the angle of attack of the aircraft in flight. These probes, however, are costly, come with inherent measurement errors, affect the flight characteristics of the aircraft, and are potentially dangerous in envelope expansion flights. Advances in the accuracy, usability, and affordability of inertial navigation systems allow for angle of attack to be determined accurately without direct measurement of the airflow around the aircraft. Utilizing an algorithm developed from aircraft equations of motion, a post-flight data review is completed as the first step in proving the …


Satellite Sequencing Optimization And Observational Orbit Determination Using Genetic Algorithms, Andrew W. Verstraete Apr 2017

Satellite Sequencing Optimization And Observational Orbit Determination Using Genetic Algorithms, Andrew W. Verstraete

Masters Theses

The problem of mission design for a robotic servicing satellite in geosynchronous Earth orbit (GEO) was investigated. A representative set of potential client satellites was selected, and operational needs were randomly assigned based on the average number of GEO retirements, anomalies, and repositioning maneuvers that currently occur each year. An objective function was developed to represent the value of servicing mission sequences, including client fees, time penalties, and operational risk. A genetic algorithm was then used to find sequences of operations on the potential client set that maximized the objective function’s value. Scenarios were analyzed with the database of satellites …


Development Of An Effective Portable And Flexible Glove For Hand Tremor Suppression, Abdulrahem Turkistani Apr 2017

Development Of An Effective Portable And Flexible Glove For Hand Tremor Suppression, Abdulrahem Turkistani

Masters Theses

This paper presents the work carried out in designing and developing a prototype for a tremor suppression system that reduces hand tremor by counteracting vibrations initiated from a patient’s shaking hand. This system includes a glove with a built-in vibration simulation module that oscillates and mimics the hand vibration. The oscillation is generated by a DC motor mounted on the top of the glove, and can vary in degree of vibration. The glove is also equipped with an accelerometer-gyroscope based micro-electromechanical system (MEMS) and vibrating coin motors mounted on each finger, both interfaced with a microcontroller. The microcontroller used in …


High Performance Silver Diffusive Memristors For Future Computing, Rivu Midya Mar 2017

High Performance Silver Diffusive Memristors For Future Computing, Rivu Midya

Masters Theses

Sneak path current is a significant remaining obstacle to the utilization of large crossbar arrays for non-volatile memories and other applications of memristors. A two-terminal selector device with an extremely large current-voltage nonlinearity and low leakage current could solve this problem. We present here a Ag/oxide-based threshold switching (TS) device with attractive features such as high current-voltage nonlinearity (~1010), steep turn-on slope (less than 1 mV/dec), low OFF-state leakage current (~10-14 A), fast turn ON/OFF speeds (<75/250 ns), and good endurance (>108 cycles). The feasibility of using this selector with a typical memristor has been demonstrated by physically integrating them …


Development Of Lignin Carbon Fiber And Reinforced Composites, Nathan Kieran Meek Dec 2016

Development Of Lignin Carbon Fiber And Reinforced Composites, Nathan Kieran Meek

Masters Theses

The aim of this work is to develop lignin carbon fiber for composite applications. This included mechanical testing of single lignin carbon fiber (LCF), interfacial shear strength determination for LCF-resin systems using single fiber fragmentation, x-ray diffraction for the evaluation of microstructural parameters, and finally composite manufacturing and testing. Through these focused areas of analysis, the carbon fiber is thoroughly characterized and composite performance is evaluated. This effort was a collaboration with the Center for Renewable Carbon (CRC) and the Civil and Environmental Engineering Department. LCF produced by the CRC resulted in fibers having tensile strength of 250-800 MPa and …


Cold Gas Dynamic Spray – Characterization Of Polymeric Deposition, Trenton Bush Nov 2016

Cold Gas Dynamic Spray – Characterization Of Polymeric Deposition, Trenton Bush

Masters Theses

When a solid, ductile particle impacts a substrate at sufficient velocity, the resulting heat, pressure, and plastic deformation can produce bonding at the interface. The use of a supersonic gas flow to accelerate such particles is known as Cold Spray deposition. The Cold Spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting material properties possible with polymeric compounds. In this work, a combined computational and experimental study a) simulated and optimized the nozzle flow conditions necessary to produce bonding in a polyethylene particle, b) developed and fabricated an experimental device, and …


Modeling And Experimental Investigation On The Influence Of Radiation Defects On Helium Behavior In Bcc Iron, Zuya Huang May 2016

Modeling And Experimental Investigation On The Influence Of Radiation Defects On Helium Behavior In Bcc Iron, Zuya Huang

Masters Theses

Fe-based alloys are important structural materials for both fission and fusion energy. For fusion applications, the challenges of radiation-induced changes in microstructure, properties and performance is further challenged by the concomitant production of helium from (n, alpha) nuclear reactions and fusion reactions. Due to the lack of a volumetric, high flux 14-MeV neutron source, studying these phenomena require the use of computational materials modeling and novel experimental methods. In this thesis, molecular dynamics (MD) simulations was used to investigate the synergistic interactions of helium with prismatic dislocation loops characteristic of those observed in neutron irradiated iron to determine how the …


A Parameterized Implementation Of A Hybrid Fuzzy Boolean Finite State Machine Using An Fpga, Sean T. Fuller Apr 2016

A Parameterized Implementation Of A Hybrid Fuzzy Boolean Finite State Machine Using An Fpga, Sean T. Fuller

Masters Theses

A fuzzy system based on the extended Hybrid Fuzzy Boolean Finite State Machine (HFBFSM) model is designed and implemented in a Xilinx Zynq® all programmable System on Chip (SoC). The system allows for a single dominant crisp state and multiple non-dominant states to be activated simultaneously. A method is proposed to calculate the degree of membership of non-dominant states, β, by the distance of defuzzified fuzzy inputs to state transition trigger mechanisms.

The HFB-FSM is was realized by the author using custom logic written in VHDL (Very High Speed Integrated Circuit (VHSIC) Hardware Description Language) in the Programmable Logic (PL) …


Integrated Solar Technologies With Outdoor Pedestrian Bridge Superstructure Decking, Richard K. Racz Mar 2016

Integrated Solar Technologies With Outdoor Pedestrian Bridge Superstructure Decking, Richard K. Racz

Masters Theses

Solar technology has been a major topic in sustainable design for many years. In the last five years, however, the solar technology industry has seen a rapid growth in installations and technological advances in cell design. Combined with a rapidly declining overall system cost, the idea of introducing solar technology into a wider range of applications is becoming a focus for engineers and scientists around the world. So many variables which alter solar energy production, such as the sun and surrounding environment, determine whether a solar design is beneficial. This thesis presents a bridge deck surface integrated with solar cells …


Mechanics Of Impulse Force Reduction For Mitigating Dump Truck Vibrations Under Hislo Conditions, Danish Ali Jan 2016

Mechanics Of Impulse Force Reduction For Mitigating Dump Truck Vibrations Under Hislo Conditions, Danish Ali

Masters Theses

"The deployment of large capacity shovels and dump trucks, for achieving economic bulk production capacities, has resulted in high impact shovel loading operations (HISLO). These large shovels generate high impact forces when loading dump trucks with over 100-ton passes under gravity. The impact forces also generate high frequency shock waves, which cause severe truck vibrations, and thus, expose dump truck operators to high levels of whole body vibrations (WBV). The dynamic impact force generates these vibrations, and thus, there is a need to develop efficient technologies to eliminate or reduce its impact. Existing literature and industry practice show that this …


Phase Dynamics Of Locset Control Methodology, Brendan Neschke May 2015

Phase Dynamics Of Locset Control Methodology, Brendan Neschke

Masters Theses

Single-mode fiber amplifiers produce diffraction-limited beams very efficiently. Maximum beam intensity requires that an array of these amplifiers have their beams coherently combined at the target. Optical path differences and noise adversely affect beam quality. An existing closed loop phase control methodology, called the locking of optical coherence by single-detector electronic-frequency tagging (LOCSET), corrects phase errors in real time by electronically detecting path length differences and sending signals to lithium niobate phase adjusters. Broadening the line-width using “jitter” of the input signal can increase the output power of an individual amplifier by suppressing nonlinearity. The system dynamics of LOCSET are …


Impact Of Fuel Rod Coatings On Reactor Performance And Safety, Ian Robert Stewart May 2015

Impact Of Fuel Rod Coatings On Reactor Performance And Safety, Ian Robert Stewart

Masters Theses

This study evaluates the use of a ceramic coating on the Zr-alloy cladding within a PWR using four ceramic compounds of 5 and 10 micron thicknesses: ZrO2, TiAlN, Ti2AlC, and Ti3AlC2. The film’s impact is assessed for variation on: reactivity, fuel cycle length, maximum temperature, film’s roughness, and transient conditions. The reactivity is analyzed using the following methods: change in the multiplication factor (k) each film introduces to the system using the ABH method, and Monte Carlo software (MCNP). Both methods are in good agreement, yielding less than half a percent change from a reference, no-film fuel pin. In order …


Self-Supported Printed Multi-Layer Capacitors, Michael James Joyce Aug 2014

Self-Supported Printed Multi-Layer Capacitors, Michael James Joyce

Masters Theses

The increasing demand for miniaturized electronic devices has increased the need for rechargeable micro-power sources. Although lithium and lithium ion batteries have been utilized in these applications since the late 1990s, other energy harvesting technologies, such as thermal, mechanical, and solar, are now being used to augment batteries to enable systems to be self-powered. However, the lifetime of any battery is finite, which may be a major problem when the application is in a permanent structure or medical implant device. For power or significant energy storage applications, printed multilayer capacitors or supercapacitors are being explored as an enhancement, or replacement …


Radiation-Induced Radicals In Polyurea-Crosslinked Silica Aerogel, Benjamin Michael Walters Aug 2014

Radiation-Induced Radicals In Polyurea-Crosslinked Silica Aerogel, Benjamin Michael Walters

Masters Theses

Free radicals are atoms or molecules with an odd number of electrons in an outer shell. Since electrons typically occur in pairs, this leaves one electron that is unpaired. In seek of another electron to pair with, free radicals react with and steal electrons from neighboring molecules, which then become free radicals themselves. This can start a chain reaction, cascading into large scale damage.

Ionizing radiation can tear through molecules, just as bullets can tear through things that we see. If free radicals can be detected, and seen to increase in a material upon radiation exposure, this can indicate molecular …


A Novel Silica-Based Nano Pigment As A Titanium Dioxide Replacement, Ryan Stoneburner Jun 2014

A Novel Silica-Based Nano Pigment As A Titanium Dioxide Replacement, Ryan Stoneburner

Masters Theses

This research focused on the evaluation of a new Silica-based pigment for the replacement of titanium dioxide (TiO2) in paperboard coatings. The silica-based pigment has shown the ability to be a replacement in terms of functionality and runnability. TiO2 is currently the highest opacifying pigment used in paper coatings, but it is also the most costly. Finding a less expensive pigment that doesn't reduce effectiveness is critical to reducing the cost of TiO2 formulations. To evaluate the new pigment, coatings will be applied using a Cylindrical Laboratory Coater (CLC) with varying amounts of TiO2 and …


Structural Analysis Of The Tablerock Thrust Sheet, Grandfather Mountain Window, Northwestern North Carolina: Emplacement Kinematics Of A Large Horse In A Major Thrust System, Ann Elizabeth Walker May 2014

Structural Analysis Of The Tablerock Thrust Sheet, Grandfather Mountain Window, Northwestern North Carolina: Emplacement Kinematics Of A Large Horse In A Major Thrust System, Ann Elizabeth Walker

Masters Theses

The Tablerock thrust sheet is exposed along the southwestern margin of Grandfather Mountain window in northwestern North Carolina, where it separates basement and cover rocks inside the window from basement thrust sheets of the overriding Blue Ridge-Piedmont megathrust sheet. It is a complex of footwall-derived horses of rifted-margin metasedimentary rocks, including Neoproterozoic to Early Cambrian Chilhowee Group quartzite and phyllite, and Shady Dolomite. Penetrative deformation throughout the Tablerock thrust sheet is defined by an extensively transposed foliation, and strong colinearity between well developed transport lineations and SE/NW-trending tight, isoclinal, and sheath folds. Centimeter- to meter-scale sheath folds are common throughout …


An Automated Finite Element Analysis Framework For The Probabilistic Evaluation Of Composite Lamina Properties, Jonathan Phillips Weigand Dec 2013

An Automated Finite Element Analysis Framework For The Probabilistic Evaluation Of Composite Lamina Properties, Jonathan Phillips Weigand

Masters Theses

This thesis outlines the development of computational modeling tools used to predict the elastic properties of composite lamina from representative volume elements (RVE) using numerical methods. The homogenization approach involves the use of Gauss’s Theorem to simply the average volumetric strain integral into a surface integral containing which is defined by surface displacements and their direction. Simulations of RVEs under specific loading conditions (longitudinal tension or shear and transverse tension or shear) are then performed in the software package ABAQUS to obtain the surface displacements. It was found that obtaining quality meshes and applying periodic boundary conditions for each RVE …


Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman Dec 2012

Validation Of Weak Form Thermal Analysis Algorithms Supporting Thermal Signature Generation, Elton Lewis Freeman

Masters Theses

Extremization of a weak form for the continuum energy conservation principle differential equation naturally implements fluid convection and radiation as flux Robin boundary conditions associated with unsteady heat transfer. Combining a spatial semi-discretization via finite element trial space basis functions with time-accurate integration generates a totally node-based algebraic statement for computing. Closure for gray body radiation is a newly derived node-based radiosity formulation generating piecewise discontinuous solutions, while that for natural-forced-mixed convection heat transfer is extracted from the literature. Algorithm performance, mathematically predicted by asymptotic convergence theory, is subsequently validated with data obtained in 24 hour diurnal field experiments for …


A Gps-Based Mobility Power Model For Military Vehicle Applications, George William Bozdech May 2012

A Gps-Based Mobility Power Model For Military Vehicle Applications, George William Bozdech

Masters Theses

In recent years, military vehicles have been equipped with hybrid, diesel-electric drives to improve fuel efficiency and stealth capabilities. These vehicles require an accurate estimate of the power duty cycles during distinct operating conditions. To meet this demand, a GPS-based mobility power and duty cycle analysis is one approach to predict the power requirements of on-road and off-road vehicles. The dynamic vehicle parameters needed to estimate the forces developed during locomotion are determined from the GPS tracking data, and these forces include the following: the motion resistance, gravitational, linear inertia, rotational inertia, and aerodynamic drag. The motion resistance force generated …


Development And Analysis Of Onboard Translunar Injection Targeting Algorithms, Phillippe Lyles Winters Reed May 2011

Development And Analysis Of Onboard Translunar Injection Targeting Algorithms, Phillippe Lyles Winters Reed

Masters Theses

Several targeting algorithms are developed and analyzed for possible future use onboard a spacecraft. Each targeter is designed to determine the appropriate propulsive burn for translunar injection to obtain desired orbital parameters upon arrival at the moon. Primary design objectives are to minimize the computational requirements for each algorithm but also to ensure reasonable accuracy, so that the algorithm’s errors do not force the craft to conduct large mid-course corrections. Several levels of accuracy for dynamical models are explored, the convergence range and speed of each algorithm are compared, and the possible benefits of the Broyden and trust-region targeters are …


Effect Of Moisture Absorption On The Sinter Quality Of Central Solenoid (Cs) Coil Pack, Zeshaan Sher Mohammed Dec 2010

Effect Of Moisture Absorption On The Sinter Quality Of Central Solenoid (Cs) Coil Pack, Zeshaan Sher Mohammed

Masters Theses

Fusion energy has been said to be the solution to all the world’s energy problems. The International Thermonuclear Experimental Reactor (ITER) is the flagship project to demonstrate the feasibility of fusion energy. The Central Solenoid (CS), an important component of the reactor, is needed to induce plasma current, initiate, ramp-up, ramp-down, and sustain plasma in a very controlled manner. In order to achieve this, the CS coil packs must be manufactured under controlled conditions. The CS conductor is an advanced cable-in-conduit Nb3Sn superconductor. The CS cable will be made in long continuous sections but with thousands of meter of cable …


Radiation-Curable Adhesives For Wood Composites, Timothy H. Starr Dec 2010

Radiation-Curable Adhesives For Wood Composites, Timothy H. Starr

Masters Theses

Wood composites are widely used in construction applications because of their superior dimensional and structural attributes over raw wood products. However, current wood composite manufacturing practices, which rely on thermal-curing of adhesives, are expensive, energy intensive, time consuming and are prone to manufacturing defects. Use of radiation curable adhesives (RCAs) could potentially answer all of these issues. Specifically, use of electron-beam (e-beam) radiation has been increasing in areas of research and industry where rapid, low-temperature polymerization is required and low energy consumption is desired. For e-beams to be used in wood composites, however, it must be determined whether or not …