Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Engineering

Soot Formation And Ignition Characteristics Of Gasoline/Ethanol Fuel Blends Using A Rapid Compression Machine, Joseph Richard Keller Gross Apr 2023

Soot Formation And Ignition Characteristics Of Gasoline/Ethanol Fuel Blends Using A Rapid Compression Machine, Joseph Richard Keller Gross

Master's Theses (2009 -)

With the growing societal concern toward vehicle emissions, renewableforms of fuel are garnering increased interest in the fuel research world. While electrification is prevalent amongst the light duty sector, many challenges arise for such type of powerplant in heavy duty vehicles. Further, current heavy duty mixing-controlled combustion uses diesel fuel, which produces significant black carbon emissions in the exhaust. Alcohol fuels from biological sources serve as a promising source ofrenewable energy for heavy duty engines. The soot emissions and thermodynamic properties of ethanol/gasoline blended fuels must be understood and quantified in order to develop heavy duty combustion engine technology capable …


Development Of Experimental And Numerical Methods For Investigations Of High-Octane Fuels In Heavy-Duty Applications, Jared James Zeman Jul 2021

Development Of Experimental And Numerical Methods For Investigations Of High-Octane Fuels In Heavy-Duty Applications, Jared James Zeman

Master's Theses (2009 -)

Increasingly stringent emissions regulations has threatened the existence of the internal combustion (IC) engine. In some transportation sectors, non-IC engine powertrains have the potential to be a logical solution. However, in the heavy-duty sector, the IC engine is predicted to remain the dominant propulsion method for the foreseeable future. With ever-increasing demand for heavy-duty power generation platforms, the primary focus for the development of the future heavy-duty IC engine needs to be on increasing engine efficiency and the adoption of lowlife-cycle carbon, clean burning fuels, e.g. methanol. The fuel ignition properties of these fuels, e.g. high octane, cause difficulties when …


Development Of A Quasi-Monte Carlo Method For Thermal Radiation, Joseph Farmer Apr 2019

Development Of A Quasi-Monte Carlo Method For Thermal Radiation, Joseph Farmer

Master's Theses (2009 -)

Radiative heat transfer in participating media is among the most challenging computational engineering problems due to the complex nonlinear, nonlocal nature of radiation transport. Many approximate methods have been developed in order to resolve radiative heat transfer in participating media; but approximate methods, by the nature of their approximations, suffer from various shortcomings both in terms of accuracy and robustness. The only methods that can resolve radiative transfer accurately in all configurations are the statistical Monte Carlo-based methods. While the Monte Carlo (MC) method is the most accurate method for resolving radiative heat transfer, it is also notoriously computationally prohibitive …


Characterization And Evaluation Of Cordless Nailer Performance For Liquid And Gaseous Fuels, Mark Carioscio Oct 2018

Characterization And Evaluation Of Cordless Nailer Performance For Liquid And Gaseous Fuels, Mark Carioscio

Master's Theses (2009 -)

The Paslode Cordless XP Framing Nailer is a combustion-powered nail gun that operates using a fuel blend of a propylene and 1-butene. This tool is designed to drive nails using a piston driven by a combustion reaction. The current fuel blend is able to fire approximately 1200 shots per fuel cartridge and match the energy output of pneumatic, corded nailers on the market. This thesis is written with the intent to gain a better understanding of the operation of the tool and how its performance varies when the fuel source is altered. A bizonal combustion model was created to simulate …


Application Of A Multi-Zone Model For The Prediction Of Species Concentrations In Rapid Compression Machine Experiments, David Wilson Apr 2016

Application Of A Multi-Zone Model For The Prediction Of Species Concentrations In Rapid Compression Machine Experiments, David Wilson

Master's Theses (2009 -)

Accurate chemical kinetic models, which predict species evolution and heat release rates in chemically reactive systems, are essential for further advancements in fuel and combustion technology. An experimental facility that is widely used for evaluating the accuracy of kinetic models is a rapid compression machine (RCM), which creates a well-defined reaction environment by compressing a reactive mixture inside a chamber. Generally, RCM experiments are conducted in order to obtain ignition delay data. However, chemical speciation data provides greater insight into reaction pathways, and is therefore a more rigorous benchmark for validating kinetic models. In order for a chemical kinetic model …