Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Investigation Of The Threshold Voltage Shift Effect Of La2o3 On Tin/Hfo2/La2o3/Sio2/Si Stacks, Ming Di Jan 2010

Investigation Of The Threshold Voltage Shift Effect Of La2o3 On Tin/Hfo2/La2o3/Sio2/Si Stacks, Ming Di

Legacy Theses & Dissertations (2009 - 2024)

The semiconductor industry continues to scale (shrink) transistor dimensions to both increase the number of transistors per integrated circuit and their speed. One important aspect of scaling is the need to decrease the equivalent oxide thickness of the transistor gate dielectric while minimizing leakage current. Traditional thin layer SiO2 or SiOxNy films have been replaced by higher dielectric constant film stacks Here we study one example, the HfO2/La2O3/SiO2 stack. This dissertation describes an investigation of the use of La2O3 to reduce the threshold voltage of TiN/HfO2/SiO2/Si stacks (high-k/metal gate stacks). A significant aspect of this study is the determination of …


Design And Development Of Highly Active, Nanoengineered, Platinum Based Core-Shell Electrodes For Proton Exchange Membrane Fuel Cells, Seth Louis Knupp Jan 2010

Design And Development Of Highly Active, Nanoengineered, Platinum Based Core-Shell Electrodes For Proton Exchange Membrane Fuel Cells, Seth Louis Knupp

Legacy Theses & Dissertations (2009 - 2024)

Highly active nanoengineered core-shell electrocatalyst have a great potential to be used as fuel cell electrodes. They can alleviate problems related with commercial carbon supported platinum by simultaneously lowering cost while enhancing reaction kinetics and overall performance. More recently, use of nanoengineered core-shell electrode structures have showed their ability to enhance the stability and overall lifetime of the catalyst without sacrificing the electrode's performance. We studied the potential of using highly active core-shell nanoparticles supported on carbon nanomaterials as fuel cell electrodes.


Fabrication And Characterization Of Nanomaterials Grown By Electron Beam Induced Deposition Process, Juntao Li Jan 2010

Fabrication And Characterization Of Nanomaterials Grown By Electron Beam Induced Deposition Process, Juntao Li

Legacy Theses & Dissertations (2009 - 2024)

Platinum&ndash and tungsten&ndashcontaining materials were grown on bulk substrates from a variety of precursors including (CH3)3CH3C5H4Pt, W(CO)6, WF6, and Pt(PF3)4 in either a high vacuum dual beam focused ion beam/scanning electron microscope (FIB&ndashSEM) or an environmental scanning electron microscope (ESEM). The effects of deposition conditions on the growth kinetics, microstructure and composition of the grown materials, structural and chemical homogeneity of impurities inside the deposits as well as the resistivity were investigated.


Quantum Dot Quantum Computation In Iii-V Type Semiconductor, Sanjay K. Prabhakar Jan 2010

Quantum Dot Quantum Computation In Iii-V Type Semiconductor, Sanjay K. Prabhakar

Legacy Theses & Dissertations (2009 - 2024)

Among recent proposals for next-generation, non-charge-based logic is the notion that a single electron can be trapped and spin of the electron can be manipulated through the application of gate potentials. In the thesis, there are two major contributions of the manipulation of electron spin. In regard to the first contribution, we present numerical simulations of such a spin in single electron devices for realistic asymmetric potentials in electrostatically confined quantum dot. Using analytical and numerical techniques we show that breaking in-plane rotational symmetry of the confining potential by applied gate voltage leads to a significant effect on the tuning …


Nanivid : A New Research Tool For Tissue Microenvironment Studies, Waseem Khan Raja Jan 2010

Nanivid : A New Research Tool For Tissue Microenvironment Studies, Waseem Khan Raja

Legacy Theses & Dissertations (2009 - 2024)

Metastatic tumors are heterogeneous in nature and composed of subpopulations of cells having various metastatic potentials. The time progression of a tumor creates a unique microenvironment to improve the invasion capabilities and survivability of cancer cells in different microenvironments. In the early stages of intravasation, cancer cells establish communication with other cell types through a paracrine loop and covers long distances by sensing growth factor gradients through extracellular matrices. Cellular migration both in vitro and in vivo is a complex process and to understand their motility in depth, sophisticated techniques are required to document and record events in real time. …


A Study Of Reticle Non-Flatness Induced Image Placement Error In Extreme Ultraviolet Lithography, Sudharshanan Raghunathan Jan 2010

A Study Of Reticle Non-Flatness Induced Image Placement Error In Extreme Ultraviolet Lithography, Sudharshanan Raghunathan

Legacy Theses & Dissertations (2009 - 2024)

As the semiconductor industry continues scaling devices to smaller sizes, the need for next generation lithography technology for fabricating these small structures has always been at the forefront. Over the past few years, conventional optical lithography technology which has adopted a series of resolution enhancement techniques to support the scaling needs is expected to run out of steam in the near future. Extreme Ultra Violet lithography (EUVL) is being actively pursued by the semiconductor industry as one of the most promising next generation lithographic technologies. Most of the issues unique to EUVL arise from the use of 13.5 nm light …


Electron Beam Lithography Throughput And Resolution Enhancement With Innovative Blanker Design, Junru Ruan Jan 2010

Electron Beam Lithography Throughput And Resolution Enhancement With Innovative Blanker Design, Junru Ruan

Legacy Theses & Dissertations (2009 - 2024)

Electron Beam Lithography (EBL) is one of the most important and most widely used methods for nano-fabrication. The primary advantage of electron beam lithography is its high resolution, and its ability to expose nanometer features without a mask. On the other hand, one of the key limitations of electron beam lithography is throughput. Slow blanking speed is one of the major bottlenecks for the system speed. In this dissertation, I will first review the prior literature of high speed blanking. Thorough theoretical and experimental studies are done on the existing designs. Physical models are built and analytical ray tracing is …


Nanoabrasives Retention And Removal Mechanisms In Polyurethane Pads For Copper Cmp, Iftikhar Ul-Hasan Jan 2010

Nanoabrasives Retention And Removal Mechanisms In Polyurethane Pads For Copper Cmp, Iftikhar Ul-Hasan

Legacy Theses & Dissertations (2009 - 2024)

The continued reduction in integrated circuit (IC) feature size requires similar reductions in surface defectivity. A key source of surface defects in IC fabrication processes stems from nanoabrasives used in chemical-mechanical planarization (CMP) processing. During CMP processing, polished surfaces are more vulnerable to defects including scratching, nanoabrasive particle adhesion and nanoabrasive agglomerate adhesion. The removal of these nano-sized particles is a priority for the IC fabrication industry and is reflected in the 2008 ITRS defect budget. However, there is insufficient technical understanding regarding the retention of residual nanoabrasives on the surfaces of the CMP pad following a CMP process and …