Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 18 of 18

Full-Text Articles in Engineering

Design And Validation Of A Variable, Speed-Dependent Resistance Training Method For Muscle Hypertrophy, Alvaro Andres Aracena Alvial Jan 2023

Design And Validation Of A Variable, Speed-Dependent Resistance Training Method For Muscle Hypertrophy, Alvaro Andres Aracena Alvial

Honors Undergraduate Theses

Muscle disorders and induced muscle atrophy impose critical risks to the well-being of an individual, limiting normal activities of daily living. Several resistance training methods have effectively reversed the progression of muscle atrophy. Weightlifting and hydrotherapy are the two widely practiced schemes for resistance training; however, there is the potential risk of excessive loads exerted on the muscles during weightlifting, and limited accessibility and cost are barriers to hydrotherapy. An alternative is using a resistance band. Some limitations include engaging multiple muscles/joints while only unidirectional resistance is feasible. To address these limitations, a VAriable Resistance Suit (VARS) was designed to …


Variational Autoencoder And Sensor Fusion For Robust Myoelectric Controls, Keith A. Currier Jan 2023

Variational Autoencoder And Sensor Fusion For Robust Myoelectric Controls, Keith A. Currier

Honors Undergraduate Theses

Myoelectric control schemes aim to utilize the surface electromyography (EMG) signals which are the electric potentials directly measured from skeletal muscles to control wearable robots such as exoskeletons and prostheses. The main challenge of myoelectric controls is to increase and preserve the signal quality by minimizing the effect of confounding factors such as muscle fatigue or electrode shift. Current research in myoelectric control schemes are developed to work in ideal laboratory conditions, but there is a persistent need to have these control schemes be more robust and work in real-world environments. Following the manifold hypothesis, complexity in the world can …


A Numerical Analysis Of Shock Angles From Inward Turning Axisymmetric Flows, William L. Hilal Jan 2023

A Numerical Analysis Of Shock Angles From Inward Turning Axisymmetric Flows, William L. Hilal

Honors Undergraduate Theses

Detonation-based propulsion systems are known for their high efficiency and energy release when compared to deflagrative systems, making them an ideal candidate in hypersonic propulsion applications. One such engine is the Oblique Detonation Wave (ODW) engine, which has a similar architecture to traditional scramjets but shortens the combustor and isolator to an anchored ODW after fuel injection.

Previous research has focused on using a two-dimensional wedge to induce an ODW while limiting total losses through the combustor. In this configuration, a two-dimensional wedge-based architecture entails a rectangular duct, limiting potential inlet design and increasing overall skin friction. However, an inward-turning …


Effectiveness Of Acoustic Design In Public Spaces, Jana V. Jirgens Jan 2023

Effectiveness Of Acoustic Design In Public Spaces, Jana V. Jirgens

Honors Undergraduate Theses

In this thesis, a discussion on the effectiveness of acoustic design in public spaces is made. The auditory properties of a location have noteworthy implications on the success of a building's design and how a room is perceived. Depending on the requirements of each location, either a reverberant or sound-absorbing approach is best suited for the environment. Moreover, public health is negatively affected by long-term involuntary noise exposure. Because of this, there is an obvious demand for continued and expanded study in acoustic design. This thesis aims to challenge interior design choices made in four testing locations: a classroom, a …


Comparing Phosphorus Removal Efficiencies And Mechanisms Via Two Cost-Effective Specialty Adsorbents In A Cascade Upflow Filtration System, Sydney Kilgus-Vesely Jan 2023

Comparing Phosphorus Removal Efficiencies And Mechanisms Via Two Cost-Effective Specialty Adsorbents In A Cascade Upflow Filtration System, Sydney Kilgus-Vesely

Honors Undergraduate Theses

Finding solutions to treat water that contains phosphorus is an important effort due to the harmful impacts it presents to both human health and the environment. Phosphorus is considered a limiting factor in water oftentimes and therefore controls the growth of algal bloom in a water body. The increase of algal populations due to wastewater effluent, stormwater runoff, and agricultural discharge in Florida waters has a direct link to the event of harmful algal blooms such as red tide in coastal regions, eutrophication of waterbodies, and fish kills. Finding low cost, energy efficient, and low maintenance green sorption media (GSM) …


Audible And Subaudible Components Of The First And Second Heart Sounds Using Phonocardiography And Seismocardiography, Daniella King Jan 2023

Audible And Subaudible Components Of The First And Second Heart Sounds Using Phonocardiography And Seismocardiography, Daniella King

Honors Undergraduate Theses

Cardiovascular disease continues to be a leading cause of death in the United States, and a source of financial strain on the healthcare system. This prompts the need for new methods of low-cost, noninvasive technologies for cardiac monitoring to improve patient health and reduce healthcare costs. While the first and second heart sounds are common references that are listened to during auscultation of heart, seismocardiography (SCG) is a technology that detects chest sound vibrations with an accelerometer and may offer more information beyond the audible heart sounds. There is currently limited information regarding both the relationship between audible heart sounds …


An Optimization Study Of Small-Scale Propeller Blade, Fahad M. Nabid Jan 2023

An Optimization Study Of Small-Scale Propeller Blade, Fahad M. Nabid

Honors Undergraduate Theses

This research paper aims to investigate the optimization of smaller propeller blades to achieve maximum efficiency by studying the effect of the twist angle on reducing drag, increasing thrust, and preventing rapid wear on the blade. Inefficient propellers consume a significant amount of energy, particularly during low-speed flights. The low Reynolds number regime challenges aviation engineers to design propellers with the highest possible efficiency to minimize energy losses. The primary objective of this thesis is to optimize smaller propeller blade shapes to enable them to produce maximum efficiency. The advanced ratio of a propeller blade heavily influences the blade's performance …


Effect Of Autoclave Process Parameters On Mechanical Behaviors Of Carbon Fiber Reinforced Polymer Composites Fabricated Via Additive Manufacturing, Quang Hao Nguyen Jan 2023

Effect Of Autoclave Process Parameters On Mechanical Behaviors Of Carbon Fiber Reinforced Polymer Composites Fabricated Via Additive Manufacturing, Quang Hao Nguyen

Honors Undergraduate Theses

Additively manufactured carbon fiber reinforced polymers (CFRP) are vastly studied for their remarkable mechanical properties compared to most other 3D printed materials. Different methods were employed to further increase mechanical performance of CFRP 3D printed parts. The objective of the study is to investigate the effect of autoclave postprocessing on the interlaminar shear behavior between 3D printed CFRP layers. 3D printed CFRP samples were processed with nine combinations of temperature and vacuum in an autoclave. Short beam shear (SBS) tests were performed to characterize the interlaminar shear strength (ILSS) of the samples after autoclave processing. Digital image correlation (DIC) was …


Towards Explainable Ai Using Attribution Methods And Image Segmentation, Garrett J. Rocks Jan 2023

Towards Explainable Ai Using Attribution Methods And Image Segmentation, Garrett J. Rocks

Honors Undergraduate Theses

With artificial intelligence (AI) becoming ubiquitous in a broad range of application domains, the opacity of deep learning models remains an obstacle to adaptation within safety-critical systems. Explainable AI (XAI) aims to build trust in AI systems by revealing important inner mechanisms of what has been treated as a black box by human users. This thesis specifically aims to improve the transparency and trustworthiness of deep learning algorithms by combining attribution methods with image segmentation methods. This thesis has the potential to improve the trust and acceptance of AI systems, leading to more responsible and ethical AI applications. An exploratory …


Expression Optimization Of The Gst-Gfp Fusion Protein Through The Alteration Of Induction Conditions, Matthew J. Vaccaro Jan 2023

Expression Optimization Of The Gst-Gfp Fusion Protein Through The Alteration Of Induction Conditions, Matthew J. Vaccaro

Honors Undergraduate Theses

This research sought to determine which induction condition resulted in the greatest GST-GFP fusion protein expression. It will hopefully serve as a guide for future researchers trying to produce their own recombinant protein containing GST and GFP-tags. The CDNB Enzyme Assay was used to determine the quantity of GST-GFP fusion protein present and tested three variables: IPTG concentration, duration, and temperature of induction. The findings showed that IPTG concentration, temperature, and induction duration all had a significant impact on protein expression. Induction temperatures of 20 °C and 25 °C showed better protein expression at IPTG concentrations of 1.0 mM IPTG …


Silver Doped Nanoceria (Agcnp) Integrated Silk Scaffold For Chronic Wound Healing, Architha K. Venkatesan Jan 2023

Silver Doped Nanoceria (Agcnp) Integrated Silk Scaffold For Chronic Wound Healing, Architha K. Venkatesan

Honors Undergraduate Theses

Chronic wound healing can be seriously impeded by the formation of biofilms, infections, peri-wound edema, hematoma, osteomyelitis, and the formation of reactive oxidative species (ROS). We hypothesize that a scaffold created from Silver-Doped Nanoceria (AgCNP) embedding silk can be beneficial to aid the wound healing process, inhibit inflammation and prevent microorganisms from forming a biofilm over the wound. Current wound healing methods such as intradermal injections are not advantageous to use since they can cause unwanted responses elsewhere in the body other than the wound site. Silk, however, has a positive impact on the wound healing effect and can be …


A Framework For The Automatic Identification Of Optimized Yield Surface Parameters, Kevin Hanekom Jan 2023

A Framework For The Automatic Identification Of Optimized Yield Surface Parameters, Kevin Hanekom

Honors Undergraduate Theses

Advanced engineering materials are designed to display tensile-compressive asymmetry (TCA) and anisotropy to provide unique attributes to critical components necessary in the hot section of turbines. The never-ending chase for higher efficiencies, and with them, higher temperature gradients, intrinsically leads to more and more of these complex materials, like single crystal turbine blades, embedded within the turbine environment. Mathematical models, known as yield criteria, allow engineers to visualize the mechanical behavior of these materials in various orientations under complex loading. Yield criteria are dependent on three key items in determination of their governing parameters: material test data, mathematical constraints, and …


Examining Direct Load Control Within Demand Response Programs, Maria Bonina Zimath Jan 2023

Examining Direct Load Control Within Demand Response Programs, Maria Bonina Zimath

Honors Undergraduate Theses

The power system is a complex entity with unique plant designs, control systems, and market strategies. For many years, engineers have developed advanced technology to keep the grid efficient and balanced. With the rise of renewable sources, some new technology and programs must be developed to keep the quality of the power system. Unlike traditional power plants, renewable energy is highly dependent on environmental factors, such as sunlight and wind, meaning the generation depends on an unpredictable source of fuel. As the grid moves to more sustainable sources, the power market faces a growing challenge of less control over the …


Effects Of Exciting And Relaxing Music On Heart Rate Variability, Pratik S. Mahajan Jan 2023

Effects Of Exciting And Relaxing Music On Heart Rate Variability, Pratik S. Mahajan

Honors Undergraduate Theses

Heart rate variability (HRV) and music have been demonstrated to have a relationship in previous literature. The primary objective of this study is to further investigate that relationship by observing HRV during periods of listening to relaxing and exciting music and comparing the results to a baseline as well as the other condition. The secondary objective of this study is to investigate the efficacy and potential usage of the Polar H10 chest strap monitor in measuring HRV parameters. The results of the Polar H10 will be compared to the iWorx TA-220 and iWorx-ECG12, the existing gold standard in HRV and …


Granular Jamming: Stiffness Vs Pressure And Organ Palpation Devices, Christopher H. Quach Jan 2023

Granular Jamming: Stiffness Vs Pressure And Organ Palpation Devices, Christopher H. Quach

Honors Undergraduate Theses

The intent of this thesis it to find a correlation between the stiffness of granular jammed particles and the pressure of the vacuum initiating the jamming force. Currently, granular jamming is being used to create palpation simulators for physicians to practice feeling the variety of stiffnesses of organs when healthy or ill. Because granular jamming allows for variable stiffness of any shape, it is an apt phenomenon to simulate the change of rigidity organs like the liver undergoes when diseased. For physicians to correctly identify how stiff the organ must be when using these palpation simulators, there needs to be …


Hypersonic Scramjet Inlet Development For Variable Mach Number Flows, Zachary P. White Jan 2023

Hypersonic Scramjet Inlet Development For Variable Mach Number Flows, Zachary P. White

Honors Undergraduate Theses

Hypersonic propulsion has become an increasingly important research field over the past fifty years, and subsequent interest in propulsion systems utilizing supersonic combustion has emerged. Air-breathing engines are desirable for such applications as hypersonic flight vehicles would not need to carry an oxidizer. Therefore, hypersonic air-breathing propulsion systems require an inlet with high mass capture and compressive efficiency. The present work seeks to outline the development and validation of a novel design tool for producing air inlet designs for hypersonic vehicles at variable flight conditions. A Busemann inlet was chosen for its high compressive efficiency, geometric flexibility, and existing experimental …


The Numerical Study Of Aeroacoustics Performance Of Wings With Different Wavelength Leading-Edge Tubercles, Youjie Zhang Jan 2023

The Numerical Study Of Aeroacoustics Performance Of Wings With Different Wavelength Leading-Edge Tubercles, Youjie Zhang

Honors Undergraduate Theses

The leading-edge tubercle is a type of airfoil modification that inspired by the humpback whale. It was found that the aerodynamic performance of the wing would increase compared to the wing without tubercles. In the past several years, a lot of numerical and experimental studies have been accomplished to explore this leading-edge modification. Besides the aerodynamic performance change, this research explores the aeroacoustics behavior of airfoils with leading-edge tubercles. A numerical study based on Computational Fluid Dynamics (CFD) is established, and simulations using Star CCM are accomplished based on reasonable set-ups. The airfoil chosen to create the wing is NACA …


Semi-Robotic Knee Arthroscopy System With Braking Mechanism, Thai Hua Jan 2023

Semi-Robotic Knee Arthroscopy System With Braking Mechanism, Thai Hua

Honors Undergraduate Theses

To alleviate the poor ergonomics which surgeons suffer during knee arthroscopy, a semi-robotic device with braking mechanism is created for intraoperative assistance. A slitted ball joint assembly is developed to transmit the clamping force to the arthroscope inside. Ball deformation and stress at various angles to the vertical and clamping forces is recorded through Abaqus Finite Element Analysis (FEA). Contact forces between the scope and inner surfaces of the ball is also computed in FEA at different clamping forces. The von Mises stress occurring in the ball joint is under the yield stress limit for polyethylene, and there is noticeable …