Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Engineering

Development Of A Comsol Microdialysis Model, Towards Creation Of Microdialysis On A Chip With Improved Geometries And Recovery, Patrick Pysz Dec 2019

Development Of A Comsol Microdialysis Model, Towards Creation Of Microdialysis On A Chip With Improved Geometries And Recovery, Patrick Pysz

Graduate Theses and Dissertations

Microdialysis (µD) sampling is a diffusion-limited sampling method that has been widely used in different biomedical fields for greater than 35 years. Device calibration for in vivo studies is difficult for current non-steady state analytes of interest correlated with both inflammatory response and microbial signaling molecules (QS); which exist in low ng/mL to pg/mL with molecular weights over a wide range of 170 Da to 70 kDa. The primary performance metric, relative recovery (RR), relating the collected sample to the extracellular space concentration varies from 10% to 60% per analyte even under controlled bench-top conditions. Innovations in microdialysis device design …


Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan Aug 2019

Modification And Optimization Of Conducting Polymer-Modified, Redox-Magnetohydrodynamics (R-Mhd) Pumping For Enhanced And Sustained Microfluidics Applications, Md Foysal Zahid Khan

Graduate Theses and Dissertations

In this work, a novel microfluidic pumping approach, redox-magnetohydrodynamics (R-MHD) has improved by materials and device optimization to use in lab-on-a-chip applications. In R-MHD, magnetic flux (B) and ionic current density (j) interacts to generate body force (FB) in between active electrodes, according to the equation FB = j×B. This unique fluid pumping approach is scalable, tunable, generates flat flow profile, and does not require any channels or valves. Pumping performance, such as speed scales with the ionic current density (j) and duration depends on the total charge (Q). The ionic current density (j) results from the conversion of electronic …


Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera May 2018

Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera

Graduate Theses and Dissertations

A new microdialysis sampling method and microfluidic device were developed in vitro. The method consisted of using up to four microdialysis sampling probes connected in series to evaluate the relative recovery (RR) of different model solutes methyl orange, fluorescein isothiocyanate (FITC)-dextran average mol. wt. 4,000 (FITC-4), FITC-10, FITC-20, and FITC-40. Different flow rates (0.8, 1.0, and 1.5 µL/min) were used to compare experimentally observed relative recoveries with theoretical estimations. With increasing the number of probes in series, the relative recovery increases and ~100% (99.7% ± 0.9%) relative recovery for methyl orange was obtained. For larger molecules such as fluorescein isothiocyanate …


Design, Fabrication, And Testing Of A 3d Printer Based Microfluidic System, Carlton A. Mcmullen Dec 2015

Design, Fabrication, And Testing Of A 3d Printer Based Microfluidic System, Carlton A. Mcmullen

Graduate Theses and Dissertations

A pneumatically actuated PDMS based microfluidic devices were designed and fabricated by soft-lithography. Two types of molds were fabricated out of different material for this experiment. The first mold, (device 1), was fabricated from a sheet of Polymethyl methacrylate (PMMA) material, similar to Plexiglas. The device features were micro-engraved onto the face of the material. The second mold, (device 2), was fabricated from the use of fused deposition modeling (FDM) 3D printing. The pumping efficiency of the PDMS devices was analyzed through the characterization of the micro-pumps flowrate with respect to the pumps driving pressure and the actuation frequency. Tested …


Microfluidics Guided By Redox-Magnetohydrodynamics (Mhd) For Lab-On-A-Chip Applications, Vishal Sahore Dec 2013

Microfluidics Guided By Redox-Magnetohydrodynamics (Mhd) For Lab-On-A-Chip Applications, Vishal Sahore

Graduate Theses and Dissertations

Unique microfluidic control actuated by simply turning off and on microfabricated electrodes in a small-volume system was investigated for lab-on-a-chip applications. This was accomplished using a relatively new pumping technique of redox-magnetohydrodynamics (MHD), which as shown in this dissertation generated the important microfluidic features of flat flow profile and fluid circulation. MHD is driven by the body force, FB = j × B, which is the magnetic part of the Lorentz force equation, and its direction is given by the right hand rule. The ionic current density, j, was generated in an equimolar solution of potassium ferri/ferro cyanide by applying …


Development Of A Pdms Based Micro Total Analysis System For Rapid Biomolecule Detection, Balaji Srinivasan Venkatesh May 2013

Development Of A Pdms Based Micro Total Analysis System For Rapid Biomolecule Detection, Balaji Srinivasan Venkatesh

Graduate Theses and Dissertations

The emerging field of micro total analysis system powered by microfluidics is expected to revolutionize miniaturization and automation for point-of-care-testing systems which require quick, efficient and reproducible results. In the present study, a PDMS based micro total analysis system has been developed for rapid, multi-purpose, impedance based detection of biomolecules. The major components of the micro total analysis system include a micropump, micromixer, magnetic separator and interdigitated electrodes for impedance detection. Three designs of pneumatically actuated PDMS based micropumps were fabricated and tested. Based on the performance test results, one of the micropumps was selected for integration. The experimental results …


Development Of A Microfluidic Device Coupled To Microdialysis Sampling For The Pre-Concentration Of Cytokines, Randy Francisco Espinal Cabrera May 2012

Development Of A Microfluidic Device Coupled To Microdialysis Sampling For The Pre-Concentration Of Cytokines, Randy Francisco Espinal Cabrera

Graduate Theses and Dissertations

A proof-of-concept microfluidic device combined with heparin-immobilized magnetic beads was created to concentrate cytokine proteins collected from microdialysis samples. Cytokines are known to be related to several diseases such as cancer, and Parkinson's diseases, so to be able to develop more effective diseases treatments their interactions have to be well understood. Amine-functionalized polystyrene and carboxyl-functionalized magnetic microspheres of ~6.0 ìm in diameter were used to immobilize heparin. The amount of heparin immobilized on polystyrene beads was 5.82 x 10-8 ± 0.36 x 10-8 M per 1.0 x 106 beads and for magnetic beads was 0.64 x 10-8 ± 0.01 x …


Factors Affecting Redox Magnetohydrodynamics For Flow In Small Volumes, Matthew D. Gerner Aug 2009

Factors Affecting Redox Magnetohydrodynamics For Flow In Small Volumes, Matthew D. Gerner

Graduate Theses and Dissertations

Lab-on-a-chip technologies offer the possibility of developing analytical devices that are low-cost, portable, disposable, fast, and operable by non-technical personnel. Such devices require automated methods to manipulate ultra-small volumes (picoliters) of samples and solution, including pumping, stirring, and positioning. Current methods for ultra-small volume microfluidics have limitations that restrict their use including high voltage requirements, disadvantageous flow profiles or rates, and relatively complicated fabrication due to mechanical parts. Redox magnetohydrodyanmics (RMHD) that utilizes permanent magnets for portability shows promise as a micropump with ease of switching flow direction, no moving parts, compatibility with both aqueous and non-aqueous solutions, low voltages …