Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Analysis Of Shock-Plugs In Quasi-One-Dimensional Compressible Flow, Matthew Alexander Thompson May 2016

Analysis Of Shock-Plugs In Quasi-One-Dimensional Compressible Flow, Matthew Alexander Thompson

Graduate Theses - Mechanical Engineering

At small length scales, such as in micro-nozzles, the assumption that a shock wave is infinitesimally thin breaks-down due to the thickness of the shock being non-negligible compared to the dimensions of the nozzle. In this thesis, shock waves of finite thickness, or “shock-plugs,” are modeled using the same methods and assumptions as a standard shock wave analysis. Due to the finite thickness of shock-plugs, however, two additional parameters are required in order to account for the differing inlet and exit areas, as well as the pressure on the side walls of the channel. A “typical” micro-nozzle with appropriate dimensions …


Design And Implementation Of A Controller For A Beaglebone Quadcopter, Peter Olejnik May 2016

Design And Implementation Of A Controller For A Beaglebone Quadcopter, Peter Olejnik

Graduate Theses - Mechanical Engineering

Unmanned aerial vehicles are quickly becoming a significant and permanent feature in today's world of aviation. Amongst the various types of UAVs, a popular type is the quadcopter. Also referred to as a quadrotor, this rotor craft's defining feature is that it has four propellers. While its use is common in the hobbyist community, this aircraft's use within industry is blooming.

Presented are the efforts to design and implement a controller for a BeagleBone based quadcopter. As part of this effort, characteristics of the quadcopter were experimentally determined. These characteristics consist of physical properties of the quadcopter, such as the …


Implementation Of Space-Time Finite Element Formulation In Elastodynamics, Sidharth Ramesh Feb 2016

Implementation Of Space-Time Finite Element Formulation In Elastodynamics, Sidharth Ramesh

Graduate Theses - Mechanical Engineering

Elastodynamics is an academic field that is involved in solving problems related to the field of wave propagation in continuous solid medium. Finite element methods have long been an accepted way of solving elastodynamics problems in the spatial dimension. Considerable thought has been given to ways of implementing finite element discretization in the temporal dimension as well. A particular method of finite element solving called space-time finite element formulation is explored in this thesis, which is a relatively recent technique for discretization in spatial and temporal dimensions. The present thesis explores the implementation of the Space-Time finite element formulation in …