Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty Publications

Modelling

Articles 1 - 24 of 24

Full-Text Articles in Engineering

Modeling Heat Conduction In Spiral Geometries, Parthasarathy M. Gomadam, Ralph E. White, John W. Weidner Jan 2003

Modeling Heat Conduction In Spiral Geometries, Parthasarathy M. Gomadam, Ralph E. White, John W. Weidner

Faculty Publications

A two-dimensional (2-D) energy balance (the 2D model) is reduced to a one-dimensioanl (1-D) energy balance (the 1D-radial-spiral model) by a coordinate transformation approach. The 1D-radial-spiral model, even though 1-D, captures both radial and spiral heat conductions over a wide range of design parameters. By comparing the temperature predictions of the 1D-radial-spiral model and the 2D model, parameter ranges were identified where spiral conduction was important and where the 1D-radial-spiral model held. The 1D-radial-spiral model provided a sixtyfold savings in computation time over the 2D model. When coupled to electrochemistry, the 2D model took approximately 20 h to simulate a …


Full Cell Mathematical Model Of A Mcfc, N. Subramanian, B. S. Haran, Ralph E. White, Branko N. Popov Jan 2003

Full Cell Mathematical Model Of A Mcfc, N. Subramanian, B. S. Haran, Ralph E. White, Branko N. Popov

Faculty Publications

A theoretical model for the molten carbonate fuel cell was developed based on the three-phase homogeneous approach. Using this model, the contribution of different cell components to losses in cell performance has been studied. In general, at low current densities, the electrolyte matrix contributed to the major fraction of potential losses. Mass transfer effects became important at high current densities and were more prominent at the cathode. Electrolyte conductivity and cathode exchange current density seemed to play a limiting role in determining cell performance. Using the model, the maximum power density from a single cell for different cell thicknesses was …


Steady-State Modeling Of A Parallel-Plate Electrochemical Fluorination Reactor, Kamal Jha, Gerald L. Bauer, John W. Weidner Jan 1998

Steady-State Modeling Of A Parallel-Plate Electrochemical Fluorination Reactor, Kamal Jha, Gerald L. Bauer, John W. Weidner

Faculty Publications

A steady-state mathematical model of a parallel-plate reactor was developed for studying the electrochemical fluorination of organic compounds dissolved in anhydrous hydrogen fluoride. The model incorporates two-phase flow with differential material, energy, and pressure balances. Profiles of temperature, pressure, vapor volume fraction, and current density in the reactor are presented at two inlet temperatures to provide insight into the operation of the reactor. The effects of the inlet temperature, feed flow rate, and cell current on the cell pack voltage and current efficiency of the reactor are presented to determine problematic operating regions for the reactor. Optimum operating currents based …


Theoretical Analysis Of Metal Hydride Electrodes: Studies On Equilibrium Potential And Exchange Current Density, Bala S. Haran, Branko N. Popov, Ralph E. White Jan 1998

Theoretical Analysis Of Metal Hydride Electrodes: Studies On Equilibrium Potential And Exchange Current Density, Bala S. Haran, Branko N. Popov, Ralph E. White

Faculty Publications

A theoretical model for the metal hydride electrode has been developed assuming that hydrogen diffusion in the alloy and charge-transfer at the surface control the discharge process. Theoretical equations for the dependence of equilibrium potential and exchange current density on the surface hydrogen concentration have been derived. These parameters have been used to correlate experimental data with the theoretical electrode discharge model. Analysis of both the experimental and theoretical discharge curves reveals a potential plateau determined by the magnitude of the interactions between the hydrogen in the alloy and the unhydrided metal. Neglecting these hydrogen-metal site interactions results in simulations …


A Model For The Galvanostatic Deposition Of Nickel Hydroxide, Mahesh Murthy, Gowri S. Nagarajan, John W. Weidner, John W. Van Zee Jan 1996

A Model For The Galvanostatic Deposition Of Nickel Hydroxide, Mahesh Murthy, Gowri S. Nagarajan, John W. Weidner, John W. Van Zee

Faculty Publications

A mathematical model is presented for the galvanostatic deposition of Ni(OH)2 films in stagnant Ni(NO3)2 solutions. The objective is to quantify the anomalous deposition behavior reported previously in which the utilization of the electrochemically generated OH species decreased drastically as the concentration of Ni(NO3)2 increased beyond 0.1 M. For example as the Ni(NO3)2 concentration increased from 0.1 to 2.0 M, the deposition rate decreased by a factor of ten at 2.5 mA/cm2. At this high ratio of concentration to current density, a comparison with Faraday's …


Anomalous Codeposition Of Fe-Ni Alloys And Fe-Ni-Sio2 Composites Under Potentiostatic Conditions, M. Ramasubramanian, S. N. Popova, Branko N. Popov, Ralph E. White, K. M. Yin Jan 1996

Anomalous Codeposition Of Fe-Ni Alloys And Fe-Ni-Sio2 Composites Under Potentiostatic Conditions, M. Ramasubramanian, S. N. Popova, Branko N. Popov, Ralph E. White, K. M. Yin

Faculty Publications

A mathematical model has been developed to describe the electrodeposition of Fe-Ni alloys and Fe-Ni-SiO2 composites under potentiostatic conditions. This model can be used to predict the polarization behavior, partial current densities, and alloy composition of each of the components as a function of the applied potential. Fe-Ni-SiO2 samples were deposited on platinum rotating disk electrodes from sulfate electrolytes under potentiostatic conditions, and the results obtained were compared to the model. The model predictions were found to agree well with the experimental observations for the Fe-Ni and Fe-Ni-SiO2 systems.


Thermal Analysis Of Spirally Wound Li/Bcx And Li/Socl2 Cells, E. E. Kalu, Ralph E. White Jan 1993

Thermal Analysis Of Spirally Wound Li/Bcx And Li/Socl2 Cells, E. E. Kalu, Ralph E. White

Faculty Publications

A thermal analysis of Li/BCX and high rate Li/SOCl2 cells is presented. The thermal model developed was used to study the effect of ambient temperature of discharge (0–40°C) on Li/BCX cells discharged at the same rate. The model predictions show that ambient temperature of discharge was critical in thermal management of the cell. For forced convection cooled cells, the model predicted that ambient temperature near room temperature (25°C) was required to achieve the lowest maximum temperature rise in the cell. Inclusion of the effects of reaction products to the model predictions showed that a constant composition assumption may be …


Mathematical Modeling Of The Formation Of Calcareous Deposits On Cathodically Protected Steel In Seawater, J. F. Yan, T. V. Nguyen, Ralph E. White, R. B. Griffin Jan 1993

Mathematical Modeling Of The Formation Of Calcareous Deposits On Cathodically Protected Steel In Seawater, J. F. Yan, T. V. Nguyen, Ralph E. White, R. B. Griffin

Faculty Publications

A first principle mathematical model of the formation of calcareous deposits on a cathodically protected steel rotatingdisk electrode in seawater is presented. The model includes equations which transport phenomena, electrochemical reactions,precipitation reactions, and a homogeneous reaction involved in the formation of calcareous deposits on an electrodesurface. Predicted concentration profiles show that a high concentration of OH ions on the electrode surface leads to the formation of calcareous deposits. The calcareous deposits contain mostly CaCO3, but the initial deposits are predicted to contain more Mg(OH)2 than CaCO3. The predicted calcareous deposits on the electrode surface …


Parametric Studies Of The Formation Of Calcareous Deposits On Cathodically Protected Steel In Seawater, J. F. Yan, Ralph E. White, R. B. Griffin Jan 1993

Parametric Studies Of The Formation Of Calcareous Deposits On Cathodically Protected Steel In Seawater, J. F. Yan, Ralph E. White, R. B. Griffin

Faculty Publications

A first principle mathematical model has been used to study the effects of ocean environment and cathodic protection on the formation of calcareous deposits and their ability to reduce the cathodic current density. These parameters include applied potential, rotation speed, temperature, salinity, and depth. The results showed the applied potential strongly influences the formation of calcareous deposits and their ability to reduce the cathodic current density. Among the environmental factors, rotation speed has the most influence on the cathodic current density. Salinity slightly influences the cathodic current density over the range of interest. Temperature is much more influential than salinity …


Thermal Mathematical Modeling Of A Multicell Common Pressure Vessel Nickel-Hydrogen Battery, Junbom Kim, T. V. Nguyen, Ralph E. White Jan 1992

Thermal Mathematical Modeling Of A Multicell Common Pressure Vessel Nickel-Hydrogen Battery, Junbom Kim, T. V. Nguyen, Ralph E. White

Faculty Publications

A two-dimensional and time-dependent thermal model of a multicell common pressure vessel (CPV) nickel-hydrogen battery was developed. A finite element solver called PDE/Protran was used to solve this model. The model was used to investigate the effects of various design parameters on the temperature profile within the cell. The results were used to help find a design that will yield an acceptable temperature gradient inside a multicell CPV nickel-hydrogen battery. Steady-state and unsteady-state cases with a constant heat generation rate and a time-dependent heat generation rate were solved.


Parameter Sensitivity And Optimization Predictions Of A Hydrogen/Oxygen Alkaline Fuel Cell Model, Michael C. Kimble, Ralph E. White Jan 1992

Parameter Sensitivity And Optimization Predictions Of A Hydrogen/Oxygen Alkaline Fuel Cell Model, Michael C. Kimble, Ralph E. White

Faculty Publications

A mathematical model is used to predict parameter sensitivities and optimal design parameters for a hydrogen/oxygen alkaline fuel cell. A sensitivity analysis of the various transport and electrode kinetic parameters indicates which parameters have the most influence on the predicted current density and over which range of potentials these parameters affect the fuel-cell performance the most. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The effect of various design parameters on the limiting current density are investigated to determine if optimal values exist for the parameters. …


Mathematical Modeling Of A Primary Zinc/Air Battery, Z. Mao, Ralph E. White Jan 1992

Mathematical Modeling Of A Primary Zinc/Air Battery, Z. Mao, Ralph E. White

Faculty Publications

The mathematical model developed by Sunu and Bennion has been extended to include the separator, precipitation of both solid ZnO and K2Zn(OH)4, and the air electrode, and has been used to investigate the behavior of a primary Zn-Air battery with respect to battery design features. Predictions obtained from the model indicate that anode material utilizationis predominantly limited by depletion of the concentration of hydroxide ions. The effect of electrode thickness on anode material utilization is insignificant, whereas material loading per unit volume has a great effect on anode material utilization; a higher loading lowers both the …


Comparison Of Heat-Fin Materials And Design Of A Common-Pressure-Vessel Nickel-Hydrogen Battery, Junbom Kim, Ralph E. White Jan 1992

Comparison Of Heat-Fin Materials And Design Of A Common-Pressure-Vessel Nickel-Hydrogen Battery, Junbom Kim, Ralph E. White

Faculty Publications

A two-dimensional, axisymmetric, and time-dependent thermal model was developed to study the temperature behavior of the cylindrically shaped common-pressure-vessel nickel-hydrogen cell. A differential-energy-balance equation was used as the governing equation. A finite-element software package called PDE/Protran was used to solve this model. Different materials such as copper, copper beryllium, silver, and sterling silver were compared as heat-fin materials. The heat-fin geometry (thickness and height) and spacing were tested to find a design that yielded an acceptable temperature gradient inside a nickel-hydrogen cell. Pulse heat-generation rates were tested and correlated with the time-dependent heat-generation cases.


A Mathematical Model Of A Cuo/Cu Vaporvolt Cell, Makoto Kawanami, Trung V. Nguyen, Ralph E. White Jan 1992

A Mathematical Model Of A Cuo/Cu Vaporvolt Cell, Makoto Kawanami, Trung V. Nguyen, Ralph E. White

Faculty Publications

A new battery named "Vaporvolt"b cell is in the early stage of its development. A mathematical model of a CuO/CuVaporvolt cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge.A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the mostinfluence on the predicted energy and power density of the Vaporvolt cell. This information can be used to decide whichparameters should be optimized or determined more accurately through further modeling or experimental studies. Theoptimal thicknesses of electrodes and separator, the concentration of the electrolyte, and …


Mathematical Modeling Of A Nickel-Cadmium Battery: Effects Of Intercalation And Oxygen Reactions, Deyuan Fan, Ralph E. White Jan 1991

Mathematical Modeling Of A Nickel-Cadmium Battery: Effects Of Intercalation And Oxygen Reactions, Deyuan Fan, Ralph E. White

Faculty Publications

Extensions are presented for a previously published (1) mathematical model of a nickel-cadmium (Ni-Cd) cell. These extensions consist of intercalation thermodynamics for the nickel electrode and oxygen generation and reduction reactions during charge and overcharge. The simulated results indicate that intercalation may be important in the nickel electrode and that including the oxygen reactions provides a means of predicting the efficiency of the cell on charge and discharge.


A Mathematical Model Of The Self-Discharge Of A Ni-H2 Battery, Z. Mao, Ralph E. White Jan 1991

A Mathematical Model Of The Self-Discharge Of A Ni-H2 Battery, Z. Mao, Ralph E. White

Faculty Publications

A simple mathematical model is presented and used to characterize the self-discharge of a nickel oxyhydroxide(NiOOH) electrode in a hydrogen environment. This model includes diffusion of dissolved hydrogen in an electrolyte film which covers a flooded electrode, electrochemical oxidation of hydrogen, reduction of nickel oxyhydroxide, and changes of surface area and of porosity of the electrode during the self-discharge process. Although the self-discharge process is complicated, the predictions of the model are consistent with experimental results reported in the literature, which include linear relationships between the logarithm of hydrogen pressure and time and between the logarithm of the capacity remaining …


A Mathematical Model Of A Hydrogen/Oxygen Alkaline Fuel Cell, Michael C. Kimble, Ralph E. White Jan 1991

A Mathematical Model Of A Hydrogen/Oxygen Alkaline Fuel Cell, Michael C. Kimble, Ralph E. White

Faculty Publications

A mathematical model of a hydrogen/oxygen alkaline fuel cell is presented that can be used to predict polarization behavior under various potential loads. The model describes the phenomena occurring in the solid, liquid, and gaseous phases of the anode, separator, and cathode regions, assuming a macrohomogeneous, three-phase porous electrode structure. The model calculates the spatial variation of the partial pressures of oxygen, hydrogen, and water vapor, dissolved oxygen and hydrogen concentrations, electrolyte concentration, and the solid- and solution-phase potential drops. By developing a complete model of the alkaline fuel cell, the interaction of the various transport and kinetic resistances can …


A Mathematical Model Of A Sealed Nickel-Cadmium Battery, Deyuan Fan, Ralph E. White Jan 1991

A Mathematical Model Of A Sealed Nickel-Cadmium Battery, Deyuan Fan, Ralph E. White

Faculty Publications

A mathematical model for the charge and discharge of a sealed nickel-cadmium (Ni-Cd) battery is presented. The model is used to study the effect of transport properties of the electrolyte and kinetic parameters of the electrode reactions on the cell performance during the charge and discharge period. The model can also be used to demonstrate the changes of cell performance during cycling. Some comparisons between model predictions and experimental results indicate that the model predictions appear to fit the experimental data well. Sensitivity analyses illustrate that the sealed nickel-cadmium battery operates under activation control. It is also shown theoretically that …


Current Distribution In A Horizon® Lead-Acid Battery During Discharge, Z. Mao, Ralph E. White, B. Jay Jan 1991

Current Distribution In A Horizon® Lead-Acid Battery During Discharge, Z. Mao, Ralph E. White, B. Jay

Faculty Publications

A simple mathematical model is presented and used to analyze the potential and current distributions in a HORIZON® sealed lead-acid battery. It was found that an increase in the thickness of an electrode would not enhance the discharge rate of that electrode; instead, it causes the transfer current distribution to be less uniform in the electrode. Also, the ohmic drop across the separator would decrease with a decrease in the thickness of the separator more rapidly when the thickness is small than when it is large. In addition, it was found that efficient high-capacity, high-rate electrodes must consider the electrode …


A Simple Model For A Zinc/Bromine Flow Cell And Associated Storage Tanks, G. D. Simpson, Ralph E. White Jan 1990

A Simple Model For A Zinc/Bromine Flow Cell And Associated Storage Tanks, G. D. Simpson, Ralph E. White

Faculty Publications

A simple model for a parallel plate, zinc/bromine flow cell and associated storage tanks is presented and used to make time-dependent predictions for various quantities in the system. The model is based on a previously published algebraic model of the cell at steady-state and time-dependent, first-order differential equations for the storage tanks. The Butler-Volmer equation is used for the electrochemical reactions, and the homogeneous reaction between bromine and bromide is included. The model predictions indicate that the charging operation of a zinc/bromine battery can be significantly improved by using a storage tank with a larger residence time for the bromine …


Estimation Of The Diffusion Coefficient And Solubility For A Gas Diffusing Through A Membrane, Michael C. Kimble, Ralph E. White, Yu-Min Tsou, R. Neal Beaver Jan 1990

Estimation Of The Diffusion Coefficient And Solubility For A Gas Diffusing Through A Membrane, Michael C. Kimble, Ralph E. White, Yu-Min Tsou, R. Neal Beaver

Faculty Publications

Analysis of the data obtained by the electrochemical monitoring technique for diffusion of a gas through a membrane is considered. It is shown that combining a numerical method with a nonlinear parameter estimation technique provides a means to determine values for the diffusion coefficient and the solubility of the diffusing gas. It is shown that better accuracy can be obtained for the diffusion coefficient and solubility of this gas by using the method presented and all experimental data rather than only part of the data, as has often been done in the past.


A Thermal Analysis Of A Spirally Wound Battery Using A Simple Mathematical Model, T. I. Evans, Ralph E. White Jan 1989

A Thermal Analysis Of A Spirally Wound Battery Using A Simple Mathematical Model, T. I. Evans, Ralph E. White

Faculty Publications

A two-dimensional thermal model for spirally wound batteries has been developed. The governing equation of the model is the energy balance. Convective and insulated boundary conditions are used, and the equations are solved using a finite element code called TOPAZ2D. The finite element mesh is generated using a preprocessor to TOPAZ2D called MAZE. The model is used to estimate temperature profiles within a spirally wound D-size cell. The model is applied to the lithium/thionyl chloride cell because of the thermal management problems that this cell exhibits. Simplified one-dimensional models are presented that can be used to predict best and worst …


A Mathematical Model Of A Lithium/Thionyl Chloride Primary Cell, T. I. Evans, T. V. Nguyen, Ralph E. White Jan 1989

A Mathematical Model Of A Lithium/Thionyl Chloride Primary Cell, T. I. Evans, T. V. Nguyen, Ralph E. White

Faculty Publications

A one-dimensional mathematical model for the lithium/thionyl chloride primary cell has been developed to investigate methods of improving its performance and safety. The model includes many of the components of a typical lithium/thionyl chloride cell such as the porous lithium chloride film which forms on the lithium anode surface. The governing equations are formulated from fundamental conservation laws using porous electrode theory and concentrated solution theory. The model is used to predict one-dimensional, time dependent profiles of concentration, porosity, current, and potentialas well as cell temperature and voltage. When a certain discharge rate is required, the model can be used …


An Algebraic Model For A Zinc/Bromine Flow Cell, G. D. Simpson, Ralph E. White Jan 1989

An Algebraic Model For A Zinc/Bromine Flow Cell, G. D. Simpson, Ralph E. White

Faculty Publications

An algebraic model for a parallel plate, zinc/bromine flow cell is presented and used to predict various performance quantities, which are compared to those predicted by using previously published differential equation models. The results presented compare well with previous work. The model is based on the concept of using well-mixed zones and linear concentration and potential profiles for the diffusion layers and the separator. The Butler-Volmer equation is used for the electrochemical reactions, and the homogeneous reaction between bromine and bromide is included.