Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle Apr 2024

Deep Selenium Donors In Zngep2 Crystals: An Electron Paramagnetic Resonance Study Of A Nonlinear Optical Material, Timothy D. Gustafson, Larry E. Halliburton, Nancy C. Giles, Peter G. Schunemann, Kevin T. Zawilski, J. Jesenovec, Kent L. Averett, Jeremy Slagle

Faculty Publications

Zinc germanium diphosphide (ZnGeP2) is a ternary semiconductor best known for its nonlinear optical properties. A primary application is optical parametric oscillators operating in the mid-infrared region. Controlled donor doping provides a method to minimize the acceptor-related absorption bands that limit the output power of these devices. In the present study, a ZnGeP2 crystal is doped with selenium during growth. Selenium substitutes for phosphorus and serves as a deep donor. Significant concentrations of native defects (zinc vacancies, germanium-on-zinc antisites, and phosphorous vacancies) are also present in the crystal. Electron paramagnetic resonance (EPR) is used to establish the …


Transition-Metal Ions In Β-Ga2O3 Crystals: Identification Of Ni Acceptors, Timothy D. Gustafson, Nancy C. Giles, Brian C. Holloway, J. Jesenovec, B. L. Dutton, M. D. Mccluskey, Larry E. Halliburton Nov 2022

Transition-Metal Ions In Β-Ga2O3 Crystals: Identification Of Ni Acceptors, Timothy D. Gustafson, Nancy C. Giles, Brian C. Holloway, J. Jesenovec, B. L. Dutton, M. D. Mccluskey, Larry E. Halliburton

Faculty Publications

Excerpt: Transition-metal ions (Ni, Cu, and Zn) in β-Ga2O3 crystals form deep acceptor levels in the lower half of the bandgap. In the present study, we characterize the Ni acceptors in a Czochralski-grown crystal and find that their (0/−) level is approximately 1.40 eV above the maximum of the valence band.