Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty Publications

Series

2008

Electrolytes

Articles 1 - 3 of 3

Full-Text Articles in Engineering

Analytical Expression For The Impedance Response For A Lithium-Ion Cell, Godfrey Sikha, Ralph E. White Jan 2008

Analytical Expression For The Impedance Response For A Lithium-Ion Cell, Godfrey Sikha, Ralph E. White

Faculty Publications

An analytical expression to predict the impedance response of a dual insertion electrode cell (insertion electrodes separated by an ionically conducting membrane) is presented. The expression accounts for the reaction kinetics and double-layer adsorption processes at the electrode-electrolyte interface, transport of electroactive species in the electrolyte phase, and insertion of species in the solid phase of the insertion electrodes. The accuracy of the analytical expression is validated by comparing the impedance response predicted by the expression to the corresponding numerical solution. The analytical expression is used to predict the impedance response of a lithium-ion cell consisting of a porous LiCoO …


Thermal Model For A Li-Ion Cell, Karthikeyan Kumaresan, Godfrey Sikha, Ralph E. White Jan 2008

Thermal Model For A Li-Ion Cell, Karthikeyan Kumaresan, Godfrey Sikha, Ralph E. White

Faculty Publications

A thermal model for a lithium-ion cell is presented and used to predict discharge performance at different operating temperatures. The results from the simulations are compared to experimental data obtained from lithium-ion pouch cells. The model includes a set of parameters (and their concentration and temperature dependencies) that has been obtained for a lithium-ion cell composed of a mesocarbon microbead anode, LiCoO2 cathode in 1 M LiPF6 salt, in a mixture of ethylene carbonate, propylene carbonate, ethyl-methyl carbonate, and diethyl carbonate electrolyte. The parameter set was obtained by comparing the model predictions to the experimental discharge profiles obtained …


A Mathematical Model For A Lithium–Sulfur Cell, Karthikeyan Kumaresan, Yuriy Mikhaylik, Ralph E. White Jan 2008

A Mathematical Model For A Lithium–Sulfur Cell, Karthikeyan Kumaresan, Yuriy Mikhaylik, Ralph E. White

Faculty Publications

A mathematical model is presented for a complete lithium–sulfur cell. The model includes various electrochemical and chemical (precipitation) reactions, multicomponent transport phenomena in the electrolyte, and the charge transfer within and between solid and liquid phases. A change in the porosity of the porous cathode and separator due to precipitation reactions is also included in the model. The model is used to explain the physical reasons for the two-stage discharge profiles that are typically obtained for lithium–sulfur cells.