Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty Publications

Series

1996

Modelling

Articles 1 - 2 of 2

Full-Text Articles in Engineering

A Model For The Galvanostatic Deposition Of Nickel Hydroxide, Mahesh Murthy, Gowri S. Nagarajan, John W. Weidner, John W. Van Zee Jan 1996

A Model For The Galvanostatic Deposition Of Nickel Hydroxide, Mahesh Murthy, Gowri S. Nagarajan, John W. Weidner, John W. Van Zee

Faculty Publications

A mathematical model is presented for the galvanostatic deposition of Ni(OH)2 films in stagnant Ni(NO3)2 solutions. The objective is to quantify the anomalous deposition behavior reported previously in which the utilization of the electrochemically generated OH species decreased drastically as the concentration of Ni(NO3)2 increased beyond 0.1 M. For example as the Ni(NO3)2 concentration increased from 0.1 to 2.0 M, the deposition rate decreased by a factor of ten at 2.5 mA/cm2. At this high ratio of concentration to current density, a comparison with Faraday's …


Anomalous Codeposition Of Fe-Ni Alloys And Fe-Ni-Sio2 Composites Under Potentiostatic Conditions, M. Ramasubramanian, S. N. Popova, Branko N. Popov, Ralph E. White, K. M. Yin Jan 1996

Anomalous Codeposition Of Fe-Ni Alloys And Fe-Ni-Sio2 Composites Under Potentiostatic Conditions, M. Ramasubramanian, S. N. Popova, Branko N. Popov, Ralph E. White, K. M. Yin

Faculty Publications

A mathematical model has been developed to describe the electrodeposition of Fe-Ni alloys and Fe-Ni-SiO2 composites under potentiostatic conditions. This model can be used to predict the polarization behavior, partial current densities, and alloy composition of each of the components as a function of the applied potential. Fe-Ni-SiO2 samples were deposited on platinum rotating disk electrodes from sulfate electrolytes under potentiostatic conditions, and the results obtained were compared to the model. The model predictions were found to agree well with the experimental observations for the Fe-Ni and Fe-Ni-SiO2 systems.