Open Access. Powered by Scholars. Published by Universities.®

Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty Publications

Electronic Devices and Semiconductor Manufacturing

III-V semiconductors

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Engineering

Very-Low-Specific-Resistance Pd/Ag/Au/Ti/Au Alloyed Ohmic Contact To P Gan For High-Current Devices, V. Adivarahan, A. Lunev, M. Asif Khan, J. Yang, Grigory Simin, M. S. Shur, R. Gaska Apr 2001

Very-Low-Specific-Resistance Pd/Ag/Au/Ti/Au Alloyed Ohmic Contact To P Gan For High-Current Devices, V. Adivarahan, A. Lunev, M. Asif Khan, J. Yang, Grigory Simin, M. S. Shur, R. Gaska

Faculty Publications

We report on Pd/Ag/Au/Ti/Au alloyed metallic contact to pGaN. An 800 °C anneal for 1 min in flowing nitrogen ambient produces an excellent ohmic contact with a specific contact resistivity close to 1×10−6 Ω cm2 and with good stability under high current operation conditions. This high-temperature anneal forms an alloy between Ag,Au, and pGaN resulting in a highly p-doped region at the interface. Using x-ray photoelectron spectroscopy and x-ray diffractionanalysis, we confirm that the contact formation mechanism is the metal intermixing and alloying with the semiconductor.


Algan/Gan Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors On Sic Substrates, M. Asif Khan, X. Hu, A. Tarakji, Grigory Simin, J. Yang, R. Gaska, M. S. Shur Aug 2000

Algan/Gan Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistors On Sic Substrates, M. Asif Khan, X. Hu, A. Tarakji, Grigory Simin, J. Yang, R. Gaska, M. S. Shur

Faculty Publications

We report on AlGaN/GaN metal–oxide–semiconductor heterostructurefield-effect transistors (MOS-HFETs) grown over insulating 4H–SiC substrates. We demonstrate that the dc and microwave performance of the MOS-HFETs is superior to that of conventional AlGaN/GaN HFETs, which points to the high quality of SiO2/AlGaNheterointerface. The MOS-HFETs could operate at positive gate biases as high as +10 V that doubles the channel current as compared to conventional AlGaN/GaN HFETs of a similar design. The gate leakage current was more than six orders of magnitude smaller than that for the conventional AlGaN/GaN HFETs. The MOS-HFETs exhibited stable operation at elevated temperatures up to 300 …